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    Chapter 16   
 Culture Methods of Eurasian Perch During 
Ongrowing       

       Tomáš     Policar     ,     Azin     Mohagheghi     Samarin    , and     Charles     Mélard   
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Aquaculture and Biodiversity of Hydrocenoses ,  University of South Bohemia in České 
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 e-mail: policar@frov.jcu.cz   

    C.   Mélard    
  Aquaculture Research and Education Center (CEFRA) ,  University of Liège , 
  Chemin de la Justice, 10 ,  4500   Tihange ,  Belgium    

    Abstract     Three different production systems are used for perch ongrowing: (1) 
traditional extensive polyculture system, (2) semi-intensive culture farming and (3) 
intensive perch farming under RAS (Recirculating Aquaculture System(s)). 
Extensive and semi-intensive culture systems have many production limitations. 
Therefore, intensive perch farming has been developed in Europe for more continu-
ous and predictive marketable perch production. 

 Marketable perch production under RAS is affected by several main factors of 
production system. Optimal value and condition of each factor for stable and maxi-
mal perch production under RAS are described and recommended in details in this 
chapter. 

 Overall, white, grey and black tank walls with light regime 12L:12D or 18 L:8D 
and light intensity 200–1,100 lx create optimal light conditions for intensive 
ongrowing perch culture. Freshwater or water with salinity under 4 ‰ with tem-
perature 22–24 °C, oxygen saturation around 60–72 % and very low ammonia 
(below 0.3 mg N-NH 3  · L −1 ) and nitrite (below 0.5 mg NO 2  −  · L −1 ) concentrations are 
optimal conditions for intensive perch production. Disturbance (cleaning of tanks, 
fi sh size-sorting etc.) must be reduced at minimum level for providing of maximal 
production which is the highest under optimal fi sh biomass from 10 to 20 kg · m −3  
for 10 g perch to 60–70 kg · m −3  for 150 g perch under RAS.  

  Keywords      Perca fl uviatilis    •   Growth   •   Intensive rearing   •   Semi-intensive culture   • 
  Extensive farming  
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16.1         Introduction 

 Nowadays, three different production systems for culture of Eurasian perch ( Perca 
fl uviatilis ) during ongrowing phase (body weight ranging from 1–2 to 100–300 g) 
can be recognized (Kestemont et al.  2008 ). Ongrowing of perch has traditionally 
taken place in production ponds and reservoirs under extensive polyculture systems 
(Tamazouzt et al.  1993 ). Semi-intensive culture using cage farming in lakes or sea 
bays or the combination of pond and RAS (Recirculating Aquaculture System(s)) 
culture in ongrowing perch has been used in different countries such as: Switzerland 
(Janssens 2013, personal communication), Sweden ( berg  2008 ), Germany 
(Schmidt and Wedekind  2008 ) and Czech Republic (Policar et al.  2009 ). However, 
conditions for more intensive aquaculture of perch have been investigated over last 
20 years (Overton and Paulsen  2005 ). Therefore, intensive perch farming under 
RAS has been developed and used for more predictive marketable fi sh production 
mainly in Switzerland, Ireland and France (Wernicke von Siebenthal  2013 ; Toner 
 2012 ; Martin and Vandevorede  2008 ).  

16.2     Extensive Perch Farming Under Pond Conditions 

 Perch farming in extensive polyculture system accounts for a substantial portion 
of marketable perch production, especially in central and eastern part of Europe 
(Kestemont et al.  2008 ) including following countries: Russia, Ukraine, Czech 
Republic, Romania, Latvia and Bulgaria (FAO  2013 ). French perch production 
from polyculture ponds occurs in three specifi c areas (Dombes, Lorraine and 
Brenne) of north-east France (Tamazouzt  2008 ). 

 The perch production cycle takes 3–4 years under extensive pond culture to pro-
duce a 250–400 g market size (Policar et al.  2009 ). Marketable perch are harvested 
maximum twice per year, once during autumn and once during spring harvest sea-
son when ponds are harvested (Kratochvíl  2012 ). 

 Young perch (0+; fi nal TL around 70 mm) are produced in monoculture system 
with or without the presence of prey fi sh, when ponds are stocked at density 120,000 
fi sh per hectare. Prey fi sh (e.g. roach,  Rutilus rutilus , topmouth gudgeon, 
 Pseudorasbora parva , or other small cyprinids species) up to mentioned perch size 
(TL = 70 mm) have not positive effect on perch growth and survival rate compared 
to perch culture without prey fi sh. Macrophytes have a positive effect on macroin-
vertebrate (phytomacrofauna) community that are the main food for reared perch in 
ponds. Their abundance seems to be more effective to increase perch production 
than using of prey (Bláha et al.  2013 ). Survival rate from larvae up to TL = 70 mm 
perch ranged from 12 % to 36 % with fi nal perch density of 14–43 thousands fi sh 
per hectare. A SGR of 1.3 % · day −1  is recorded during the rearing period from the 
end of April till the end of September (Bláha et al.  2013 ). 

T. Policar et al.
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 Ongrowing perch (1+ to 3+) are cultured in ponds of several hectares in polyculture 
(Policar et al.  2009 ). In this rearing system, the production of marketable perch repre-
sents 0.25–1 % only from the total fi nal biomass of fi sh stock, which is dominated by 
cyprinids species such as common carp ( Cyprinus carpio ) 80–85 %, Chinese carps 
(5–10 %) such as grass carp ( Ctenopharyngodon idella ) and bighead carp 
( Hypophthalmichthys molitrix ) (Adámek et al.  2010 ; Kratochvíl  2012 ). Perch as a 
predatory species plays an important role in the control and regulation of the overpopu-
lated and less valued small cyprinids such as: roach, bleak ( Alburnus alburnus ), bream 
( Abramis brama ), topmouth gudgeon and ruffe ( Gymnocephalus cernua ) in produc-
tion ponds (Musil and Adámek  2003 ; Adámek et al.  2012 ). Thus, perch is an interest-
ing supplementary fi sh to regulate carp production in ponds (Adámek et al.  2010 ).  

16.3     Semi-intensive Perch Farming Using Cages and Ponds 

 Commercial culture of perch in cages was used by Perlac company, Switzerland 
under ambient water temperature in lake Neuchâtel near to Chez–le–Bart during 
1999–2005 (Janssens 2013, personal communication). The Swedish company, 
Stannafi sk AB, followed the same procedure using cages and tarpaulin tanks for 
perch production in the sea bay near to Ȍstergötland between 2006 and 2011 
(Ȍberg  2008 ,  2012 ). Very low fi sh growth and survival mainly during winter 
period, poor effi ciency of culture system (Ȍberg  2012 ), fatal bacterial infection 
caused by  Aeromonas sobria , as well as social and political problems with operat-
ing fi sh farms in Swiss lake (Janssens 2013, personal communication) resulted in 
the failure of this production system for marketable perch production in the men-
tioned countries. 

 The greatest drawback of this perch farming system within Europe is suboptimal 
temperature for growth during whole year. It requires two successive growing sea-
sons (May–October, Fig.  16.1 ) to obtain marketable-size fi sh (80–100 g minimum) 
when water temperature ranges between 14 and 20 °C (Tamazouzt et al.  1993 ). 
Temperature during ongrowing season highly affected perch production ranging 
from 15 to 160 g · m −3  · day −1  when fi sh were reared under relatively high fi nal den-
sity (30 kg · m −3 ) (Kestemont and Mélard  2000 ).

   Fontaine et al. ( 1996 ) recommended using the pond – cage combination system 
for perch farming. In this system, 1-year old perch of 10–20 g body weight were 
harvested from ponds during spring and subsequently cultured in cages for two 
summer seasons. However, the perch growth recorded in this cage culture system 
was very low and a few fi sh reached a marketable size (80–100 g). When Tamazouzt 
et al. ( 1996 ) reared perch with initial body weight 25 g in fl oating cages from July 
to September survival rate was between 70 % and 79 % and body weight perch, 
ranging from 48 to 49 g, far less than minimal market size. Perch cultured in cages 
had a higher protein and a lower lipid and energy content compared to perch reared 
in recirculating aquaculture system(s) (RAS) under 22 °C (Tamazouzt et al.  1996 ). 
Nowadays, this farming system is not widely used for commercial perch production 

16 Culture Methods of Eurasian Perch During Ongrowing
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in Europe because it does not provide stable, high-quality and profi table production 
of marketable fi sh (Kestemont and Mélard  2000 ).  

16.4     Semi-intensive Perch Farming Using the Combination 
of Pond and RAS Culture 

 Initial larval and juvenile culture under pond conditions up to perch of 1–3.2 g body 
weight has been combined with intensive ongrowing of fi sh to a commercial size in 
RAS using artifi cial food (Schmidt and Wedekind  2008 ; Stejskal et al.  2009a ,  2010 ). 
This production system using advantages of both pond and RAS culture systems is 
very effi cient. 

 Survival rate during habituation of the pond-reared fi ngerlings was 95 % after 
one week adaptation and weaning period when perch were fed frozen  Chironomus  
or  Chaoborus  larvae with artifi cial food. The advantages of the pond culture system 
are: natural food, rapid fi sh growth, high-quality of produced juveniles, low produc-
tion cost, elimination of abnormal fi sh, environmentally friendly and sustainable 
fi sh production without any fi sh deformity. RAS provides controlled and stable pro-
duction conditions throughout year resulting in rapid growth rate and thus shorter 
production cycle of marketable fi sh (Stejskal et al.  2010 ; Policar et al.  2013 ). 
Currently, the greatest limitation of this system for perch rearing is only one batch 
production per year, when initial pond culture of this system is possible to carry out 
during later spring or summer period. The second limitation is the risk to introduce 
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  Fig. 16.1    Growth curve of perch in cage under natural fl uctuated temperature (2–23 °C) or at 
stable temperature (23 °C) in RAS (Mélard  2008 )       
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diseases in the RAS when stocking with juveniles fi sh coming from ponds (Schmidt 
and Wedekind  2008 ; Stejskal et al.  2010 ). This system is successfully used mainly 
in countries of Central Europe (Czech Republic, Germany, Hungary etc.) where 
large pond area is available (Policar et al.  2011 ).  

16.5     Intensive Perch Farming Under RAS 

 Intensive perch culture in recirculating aquaculture system(s) provides optimal cul-
ture conditions for rapid fi sh growth, high survival rate, shorter production cycle, 
year round and predictable production, reduction of fi sh stress and cannibalism. In 
order to ensure a high productivity and reduced production costs, several rearing 
conditions have to be optimized (Fig.  16.1 , Kestemont and Mélard  2000 ): colour of 
rearing tank walls (Staffan  2004 ; Mairesse et al.  2005 ; Strand et al.  2007a ), light 
regime and intensity (Jourdan et al.  2000 ; Strand et al.  2007a ; Stejskal et al.  2009a , 
 2010 ; Jacquemond  2004 ), water temperature (Karas and Thoresson  1992 ; Kestemont 
and Mélard  2000 ; Mélard et al.  1995 ,  1996a ; Overton and Paulsen  2005 ; Strand 
et al.  2007b ; Mélard  2008 ), water quality including mainly oxygen (Zakes and 
Demska-Zakes  2005 ; Mélard  2008 ; Stejskal  2009b ,  2012 ), salinity (Overton et al. 
 2008 ), ammonia and nitrite levels (Mélard  2008 ; Vandecan et al.  2008 ; Kroupová 
et al.  2013 ), disturbance during tank cleaning, fi sh size-sorting (Mélard et al.  1995 , 
 1996a ; Kestemont and Baras  2001 ; Strand et al.  2007b ; Mélard  2008 ) and fi sh den-
sity and biomass (Mélard et al.  1996a ,  b ; Mélard  2008 ).  

16.6     Factors Affecting Growth, Survival Rates 
and Productivity of Perch Under Intensive Culture 

16.6.1     Colour of Tank Walls, Light Intensity and Regime 

 The interaction between colour of tank walls and light intensity creates specifi c light 
conditions within rearing tanks which signifi cantly affects feed detection and feed-
ing success of farmed perch under intensive conditions, thus infl uencing perch 
growth (Strand et al.  2007a ). 

 In general, larvae of percid species are strongly phototactic, but older individuals 
may be more sensitive to high light intensities (Craig  2000 ; Kestemont and Mélard 
 2000 ; Kestemont et al.  2003 ) such as 2,200 lx (Staffan  2004 ). However, Strand et al. 
( 2007a ) showed that different light intensities (at least when 200 and 1,100 lx were 
used) did not affect feed intake, growth rate and growth effi ciency. Instead, the men-
tioned study showed that food intake and consequently growth rate were signifi -
cantly higher in white or grey tanks compared to black ones under low light intensity 
(200 lx). The reason was reported to be the increased feed visibility, probably due 
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to the feed’s higher contrast against the background colour of the tank walls. When 
the authors used higher light intensity (1,100 lx) for different wall colour tanks they 
didn’t fi nd any signifi cant differences in feed intake and growth rates between dif-
ferent colours of tank wall. The explanation of this observation is that higher light 
intensity increased the ability of fi sh to detect feed in dark tanks (Strand et al.  2007a ) 
and the effect of colour of tank walls on the feed intake has been reduced. Careful 
consideration of tank colour therefore was reported to be of greater importance at 
low light intensities than at high light intensities (Strand et al.  2007a ). Any effect of 
tank colour and light intensity on the energy expenditure was not evident during 
mentioned experiment. Probably, stress was not induced by any tested environmen-
tal factors or their combination for the cultured perch. Staffan ( 2004 ) tested three 
different light intensities (16; 200 and 2,200 lx) during light regime 12L:12D and 
found that perch were more active during daytime in the highest light intensity com-
pared to two lower intensities. These results can indicate increased stress at higher 
light intensity that is not recommended for perch aquaculture. Staffan ( 2004 ) also 
studied preference of perch for three different colours of tank walls (white, grey and 
black), when perch could move freely among tank colours. No general preferences 
were found for any specifi c colour. As growth did not differ among the three differ-
ent tank colours, the study indicated that white, grey and black tank wall colours are 
equally suitable for farming of perch. A clear difference in body colour was interest-
ingly noted for perch kept in black and white tanks. Almost, all perch coming from 
the black tanks were dark and perch coming from the white tanks were light grey 
(Mairesse et al.  2005 ; Strand et al.  2007a ). This phenomenon indicated that the 
capacity of perch to change body colour in accordance with its background could 
reduce conspicuousness and thus reduce this potential source of stress in cultured 
fi sh (Strand et al.  2007a ). 

 Light regime 12L:12D with an intensity of 105–250 lx at water surface (Stejskal 
 2009a ,  2010 ; Jacquemond  2004 ) or 16L:8hD (Strand et al.  2007a ) were used during 
perch ongrowing phase under controlled and intensive conditions. When Jourdan 
et al. ( 2000 ) increased light regime from 12L:12D to 18L:6D and even 24L:0D, 
specifi c growth rates of perch signifi cantly increased but without any differences 
between both light regimes 18L:6D and 24L:0D.  

16.6.2     Water Temperature 

 Eurasian perch is a thermophilic species and optimum temperature for rapid growth 
ranges from 22 to 24 °C (Mélard et al.  1996a ). Intensive ongrowing of perch under 
this range of temperature gives the highest productivity level (Kestemont and 
Mélard  2000 ). Temperatures of 22–24 °C maintained during the whole ongrowing 
phase results in market size perch (130–150 g) obtained in about 14 months includ-
ing larval rearing period (Mélard et al.  1996a ). When perch juveniles (0.5 g initial 
body weight) were cultured under RAS at 23 °C the minimal commercial market-
able size (100 g) could be obtained after 9 months (Fig.  16.2 , Mélard  2008 ). 
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Maximum daily growth rates (0.06–1.80 g · fi sh −1 ) for 3–300 g fi sh were also 
observed at 23 °C. This constant elevated temperature inhibited the sexual matura-
tion in female. This phenomenon supported female higher investment in somatic 
growth rate. However, males presented a normal gonadal development in the same 
temperature conditions (Mélard et al.  1996a ; Overton and Paulsen  2005 ).

   Rearing at higher (27 °C) or lower temperatures (11–20 °C) reduces growth rate, 
i.e. the growth of 15 g fi sh at 27 °C was 12 % lower than at 23 °C. Similarly, 100 g 
perch reared under 20 °C had a 20 % lower growth compared to 23 °C (Mélard et al. 
 1996a ). A relative low growth rate was observed at 11 °C which is 29 % of that 
found at 23 °C. This low temperature is not suitable for intensive perch culture and 
it has been used within extensive (pond) or semi-intensive (cage) perch culture dur-
ing spring and autumn (Kestemont and Mélard  2000 ). Nevertheless, Mélard et al. 
( 1995 ) found higher SGR (1.86 % · day −1 ) in 1.9 g perch cultured at 26.5 °C com-
pared to 22.9 °C (1.76 % · day −1 ). These results were not signifi cantly different 
because both temperatures were within optimal range of temperature for perch 
growth. Strand et al. ( 2007b ) indicated the lack of temperature effect on energy 
expenditures of Eurasian perch and concluded that this fi sh is equally well adapted 
for growth at both 17 and 23 °C. Also they found that perch does not seem to be 
energetically more sensitive to disturbance at 23 than at 17 °C. However, the overall 
effect of temperature was signifi cant for feed intake and growth rate, with higher 
feed intake and growth rate at 23 than at 17 °C. Karas and Thoresson ( 1992 ) showed 
a maximum food consumption of perch between 23 and 28 °C. 
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  Fig. 16.2    Effect of water temperature on growth of mixed sex perch in intensive rearing condi-
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 Despite this, Overton and Paulsen ( 2005 ) recommended temperature around 
20 °C for perch rearing because this temperature is better for easier control of infec-
tions and problems occurred by  Saprolegnia  spp. Mélard et al. ( 1995 ) found the 
higher infection level of cultured ongrowing perch by  Heteropolaria  spp. at 
26.5 °C. The survival of ongrowing perch (83.2 %) was negatively affected by this 
infection at 26.5 °C compared to lower temperature 22.9 °C without any infection 
and with survival rate 91.5 % (Mélard et al.  1995 ). Effect of bacteria ( Aeromonas  
sp.,  A. veronii ,  A. hydrophila ,  Streptococcus  sp.,  Staphylococcus  sp.,  Vibrio fl uviati-
lis  and  Enterobacter agglomerans ) and protozoa ( Ichtyobodo necator ,  Trichodina  
sp.,  Ambiphyra  sp. and  Heteropolaria  sp.) species on the perch health inducing 
mass mortality of fi sh under stable and optimal temperature in intensive perch cul-
ture was well reviewed by Grignard et al. ( 1996 ).  

16.6.3     Water Quality Including Oxygen, Salinity and Ammonia 
Level 

 Generally, water quality directly affects physiological condition of cultured perch 
and indirectly their feed intake and growth rate (Wedemeyer  1996 ). The oxygen 
level should be maintained above 5 mg O 2  · L −1  (60 % oxygen saturation) and higher 
oxygen concentrations do not signifi cantly increase the growth rate of perch under 
intensive ongrowing conditions at 23 °C (Mélard  2008 ). However, Kestemont et al. 
( 2008 ) recommended optimal oxygen level up to 6 mg O 2  · L −1 , i.e. 68–72 % oxy-
gen saturation for intensive perch juvenile culture under 20–23 °C. Stejskal et al. 
( 2009b ) used 6.8 ± 1.2 mg O 2  · L −1  oxygen level, i.e. 80 % oxygen saturation, for 
ongrowing perch under intensive culture. Effect of three different oxygen levels 
(hypoxia: 50–60 % oxygen saturation; normoxia: 90–100 % and hyperoxia: 140–
150 %) on the feed intake and conversion and growth rate of intensively cultured 
pikeperch ( Sander lucioperca ) was examined by Stejskal et al. ( 2012 ). These 
authors found that higher oxygen saturation provides higher feed intake, better feed 
utilization (lower FCR) and growth rate. Perch has very similar environmental 
requirements as pikeperch (Craig  2000 ), therefore found results could be also gen-
eralized to intensive perch culture. Optimization of oxygen level during intensive 
perch culture needs additional studies mainly for obtaining more precise data 
regarding to the growth, feed conversion under high oxygen level and the impact on 
production cost in intensive perch farms. Biological oxygen consumption (OC in 
mg O 2  · kg −1  · h −1 ) in six size groups (18.4–82.3 g) of intensively farmed perch was 
determined at 23 °C by Zakes and Demska-Zakes ( 2005 ). OC decreased from 
336.2 to 185.0 mg O 2  · kg −1  · h −1  in all tested size groups. An increase of body weight 
by 1 g led to average decrease in OC by a mean of 2.53 O 2  · kg −1  · h −1 . Stejskal et al. 
( 2009b ) observed diurnal course of OC in two groups (fed and feed-deprived) of 
intensively cultured perch. Fed perch with body weight from 44.8 to 279.4 g had 
average OC 288.3–180.6 mg O 2  · kg −1  · h −1  with signifi cant peak observed 6 h after 
the onset of feeding and relatively stable values of OC up to the end of feeding 
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during day. Signifi cantly lower average OC values (181.1–110.5 mg O 2  · kg −1  · h −1 ) 
were found in feed-deprived perch with body weight 57.9–336.2 g without any 
signifi cant peak of OC during day. 

 Oxygen levels under 5 mg · L −1  may induce signifi cant stress leading to pathology 
and mortality (Stejskal et al.  2009b ; Mélard  2008 ). Mortality of perch mainly 
appears when oxygen defi cit is combined with intensive feeding resulting in addi-
tional oxygen consumption (Stejskal et al.  2009b ). 

 Overton et al. ( 2008 ) found that growth rate and condition factor of perch from 
freshwater population (1.6 g) can be negatively affected by salinity exceeding 10 ‰ 
during 126 days rearing at 20 °C. These authors showed signifi cantly higher growth 
rate in freshwater and at salinity 4 ‰, compared to salinity 10 ‰. Moreover, salinity 
10 ‰ caused higher FCR (2.48) compared to freshwater or salinity 4–8 ‰ (1.80). 
Condition factor was reduced at salinity 10 ‰ compared to perch reared in freshwa-
ter with salinity 0 ‰. These results show that a freshwater strain of perch presents 
the best growth performance in fresh water or low saline conditions (4 ‰). Regarding 
to the fact that some perch strains are found in brackish waters, Overton et al. ( 2008 ) 
recommended choosing salinity adapted strains for brackish water production as 
found in the lower Baltic region. 

 Overton et al. ( 2008 ) found negative effect of higher salinity 13 ‰ and 18 ‰ 
on perch survival which was highly affected by water temperature (12, 15, 20 and 
25 °C). No mortality of perch was found when fi sh were moved into brackish 
water of 13 ‰ at 12 and 15 °C. However, a dramatic increase in mortality rate was 
seen when perch were transferred into brackish water of 13 ‰ at 20 or 25 °C. A 
total of 50 % mortality was reached at 109 and 62 h for the two mentioned tem-
peratures. Perch transfer to brackish water at 18 ‰ resulted in high mortality. 
Again, the mortality rate was positively related to temperature and 50 % mortality 
was reached at 178, 119, 69 and 39 h at 12, 15, 20 and 25 °C, respectively 
(Overton et al.  2008 ). 

 In intensive perch culture under RAS, high concentrations of ammonia and 
nitrite in water may take place when biological fi lters do not work properly. 
Ammonia (0.3 mg N-NH 3  · L −1 ) and nitrite (0.5–0.7 mg NO 2  −  · L −1 ) concentrations 
induce physiological changes in perch such as reduced excretion of ammonia, con-
version of haemoglobin to methaemoglobin resulting in limited oxygen transport 
(Jensen  2003 ; Svobodová 2005; Mélard  2008 ; Kroupová et al.  2013 ). These physi-
ological changes negatively affect growth performances then induce mortality 
(Svobodová et al.  2005 ; Mélard  2008 ; Vandecan et al.  2008 ). A chronic exposure of 
140–150 g perch at concentrations of 0.3–0.4 mg N-NH 3  · L −1  induces a 50 % 
decrease of growth rate compared to fi sh in control groups under temperature 
23.1 °C, oxygen saturation 100 % and pH 8.1 (Fig.  16.3 ) (Vandecan et al.  2008 ; 
Mélard  2008 ). Higher ammonia concentration (0.8 mg N-NH 3  · L −1 ) has lethal effect 
for 50 % of the population after 96 h exposure at 23 °C (96hLC50) (Vandecan et al. 
 2008 ; Mélard  2008 ).

   Acute toxicity of nitrite for 10.8 g perch was found by Kroupová et al. ( 2013 ). 
These authors established lethal concentration of nitrite (48hLC50) at 11 mg   NO 2  −  · L −1 . 
Concentration of 3.8 mg NO 2  −  · L −1  was found safe after 48 h exposure. However, 
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these results are obtained from laboratory experiments and according to our fi eld 
experience, lethal concentration of nitrite is even signifi cantly lower (1–3 mg NO 2  −  · L −1 ) 
during intensive perch culture under RAS.  

16.6.4     Disturbance 

 Disturbance from cultivation procedure like cleaning of tanks, service disturbance, 
fi sh size-sorting and other stressful events, reduce feed intake and increase energy 
expenditure (Strand et al.  2007b ) and indirectly decrease growth in perch (Jentoft 
et al.  2005 ; Strand et al.  2007b ). All mentioned operation must be carefully done for 
maintenance of good zoohygienic conditions, sorting of perch, elimination of 
growth heterogeneity and cannibalism with minimal negative effect on production 
(Mélard et al.  1996a ; Acerete et al.  2004 ; Jentoft et al.  2005 ; Strand et al.  2007b ). 
Proper culture management may reduce the response of fi sh to disturbance (Strand 
et al.  2007b ). 

 Higher frequency of disturbance, included cleaning of tanks and other service 
disturbance, decreased feed intake and growth rate under lower (17 °C) and optimal 
temperature (23 °C). Severely disturbed perch at 17 °C had higher energy expendi-
tures than undisturbed fi sh. The energetic growth effi ciencies for disturbed fi sh were 
reduced by 19–38 % compared to undisturbed fi sh causing a reduction in weight 
increase of 24–56 %. No signifi cant effect of higher frequency of disturbance on 
energy expenditures was observed at 23 °C (Strand et al.  2007b ). The timing of this 
disturbance in relation to time of feeding is also very important factor affected feed 
intake in perch. Kestemont and Baras ( 2001 ) indicated that feed intake for perch 
disturbed by human activity prior to their fi rst meal was reduced by 60 %, but if the 

  Fig. 16.3    Effect of long time 
exposure to ammonia on 
growth of 150 g perch at 
23 °C (Mélard  2008 )       
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fi sh were disturbed later in the day, after being fed, the daily feed intake was little 
affected. In contrast, Strand et al. ( 2007b ) executed disturbance after the morning 
meal found 7 and 28 % reduction of feed intake at 17 °C, and 31 and 22 % at 23 °C 
for moderately and severely disturbed perch.  

16.6.5     Growth Heterogeneity 

 Fish size-sorting is a very important operation within intensive perch culture for the 
reduction of growth heterogeneity and cannibalism with minimal negative effect on 
production. However this operation is stressful for fi sh and, paradoxically, may 
induce new social interactions within perch population after a grading. Generally, 
frequency and process of fi sh size-sorting must be optimized according to current 
situation in perch farming (Mélard et al.  1995 ,  1996a ,  b ; Kestemont and Mélard 
 2000 ; Mélard  2008 ). Fish size-sorting to reduce growth heterogeneity results in the 
emergence of fast growing perch in each sorted group and strongly reduces canni-
balism. However, this technique induces a new increase of heterogeneity in future 
culture phase (Mélard et al.  1996b ; Mélard  2008 ; Kestemont et al.  2000 ). 
Paradoxically, Kestemont et al. ( 2000 ) found that the higher initial heterogeneity 
caused the lower fi nal heterogeneity (Table  16.1 ). However, high initial heterogene-
ity promoted cannibalism exerted upon small fi sh and induced a decrease of hetero-
geneity and survival rate under its initial value.

   Heterogeneity in perch growth is high. Body weight can range from 7 to 89 g for 
7-month-old perch averaging 25.9 g (Mélard et al.  1996a ) and from 21 to 452 g for 
1-year-old perch (Fig.  16.4 ). In general, size heterogeneity (coeffi cient of variation 
of body weight) tends to stabilize around 40–45 % (Kestemont et al.  2000 ). The 
origin of the huge heterogeneity in perch is not only due to sexual dimorphism, 
when female grows around 20–30 % faster than males (Fontaine et al.  1997 ; Rougeot 
and Mélard  2008 ), but also to genetic traits (Mandiki et al.  2004 ) and social behav-
iour (Mélard et al.  1995 ). Therefore, the sorting process does not guarantee the 
improvement of the global productivity of perch culture. For instance, non-sorted 

   Table 16.1    Size model heterogeneity for perch: effect of initial size heterogeneity, body weight, 
tank volume and biomass (Kestemont et al.  2000 )   

 Dependent variable: SHR (‰ day −1 ); F-value = 100.4; R 2  = 0.839; P < 0.0001; df = 82 

 Independent variable  Coeffi cient  S.E.  F-to-remove  P 

 Intercept  20.759  1.675  153.6  <0.0001 
 Log [CV i  (%)]  −13.404  1.092  150.8  <0.0001 
 W i  (g)  −0.248  0.041  37.3  <0.0001 
 Log [tank volume (m 3 )]  1.264  0.420  9.1  0.0035 
 Log [Stocking biomass (kg m −3 )]  −0.437  0.150  8.5  0.0046 

  Where SHR is specifi c heterogeneity variation rate = 100 [Ln (CV 2 ) – Ln (CV 1 )] [t 2 -t 1 ] −1  

 Where CV i  is the initial coeffi cient of variation of body weight  
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populations had a growth rate 5–6 % higher than in size-graded populations of same 
origin and body weight (Mélard et al.  1995 ,  1996a ; Mélard  2008 ). Generally, inten-
sive perch farming needs to reduce frequency of fi sh size-sorting. Perch intensive 
culture with lower needs for fi sh size-sorting can be provide by the production of 
monosex female populations with higher growth rate, shortening production cycle 
and lowering size heterogeneity (Mélard et al.  1996a ; Rougeot and Mélard  2008 ).

   Generally, mortality resulting from direct and indirect effect of handling is only 
a small part of overall mortality, which is mainly due to parasites and bacteria 
(Mélard et al.  1996a ).  

16.6.6     Body Weight 

 Increasing body weight of intensively cultured perch under 23 °C decreased SGR 
and production capacity. Perch of 5 g body weight reared at an optimal biomass of 
35 kg · m −3  gave production around 600 g · m −3  · day −1 . At an optimal biomass of 
75 kg · m −3 , the production of 150 g body weight fi sh was 320 g · m −3  · day −1 , only 
(Fig.  16.6 , Mélard  2008 ). Overton et al. ( 2008 ) obtained the same results related to 
growth rate for perch reared during 4 months. Decreasing specifi c growth rate was 

  Fig. 16.4    Body weight heterogeneity of 1 year old progeny of mixed sex perch reared in RAS at 
23 °C       
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found from 6 % · day −1  for perch reared 1–14 days after the start of the experiment 
up to growth rate 1 % for older perch reared 85–126 days of the experiment. 

 Continuous mortality may occur throughout intensive perch culture within the 
1–200 g body weight range and result in an overall 50 % survival rate after 14 months 
(Mélard et al.  1996a ). In RAS, where rearing conditions are optimal, Mélard ( 2008 ) 
reported that mortality takes place during fi rst months of intensive culture of 
ongrowing perch from 0.3 to 200 g body weight and overall survival rate is fl uctuat-
ing between 60 % and 70 % (Fig.  16.5 ).

16.6.7        Fish Density and Biomass 

 In general, higher fi sh density signifi cantly increases growth rate and decreases 
growth heterogeneity in initial phase of perch intensive ongrowing (0.5–15 g) 
(Mélard et al.  1996a ). Increased stocking density from 400 to 10,000 fi sh · m −3  
resulted in a 67 % increased growth rate of 1 g perch juveniles cultured under 23 °C 
during 74 days. Growth rate was 0.12 and 0.20 g · fi sh −1  · day −1  at densities of 400 
and 10,000 fi sh · m −3 , respectively (Mélard et al.  1996a ). Mélard et al. ( 1996b ) exam-
ined the effect of stocking density on 45-days perch juveniles and showed that 
higher densities (1,430 and 2,380 fi sh · m −2 ) signifi cantly increased specifi c growth 
rate of perch in comparison to low density (95 fi sh · m −2 ). After 74-days rearing, 
juveniles with initial body weight 0.86 g reached a fi nal body weight of 9.75 g 
(SGR = 3.44  % · day −1 ) and 15.83 g (SGR = 3.87 % · day −1 ) under low (95 fi sh · m −2 ) 
and high fi sh density (2,380 fi sh · m −2 ), respectively. 

  Fig. 16.5    Evolution of perch survival in RAS starting from 0.3 g weaned juveniles to 1 year 200 g 
fi sh (Mélard  2008 )       
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 However, this positive relationship between perch biomass and growth rate was 
valid until fi sh reached 10–16 g body weight (Mélard et al.  1996a ). Growth rate of 
ongrowing perch with initial body weight up to 16 g decreased with increasing 
stocking biomass up to 20–60 kg · m −3  (Mélard  2008 ). 

 For 5–10 g perch increasing density induces a decreasing of growth hetero-
geneity and consequently of cannibalism (Mélard et al.  1996b ). Coefficient of 
variation of fish body weight was decreased from 98.4 % to 57.9 % with increas-
ing stocking density from 400 to 10,000 fish · m −3  (Mélard et al.  1996a ). Negative 
effect of higher density on cannibalism rate was found by Mélard et al. ( 1996b ). 
Density up to 1,430 fish · m −2  resulted in lower numbers of cannibals. Emergence 
of cannibalism depending on perch density was modelled as a second order 
polynomial equation (R 2  = 0.995, df = 9, P < 0.01): NCa = 0.157 + 6.394 × 10 −2  
ISD – 1.779 × 10 −5  (ISD) 2 , where NCa is numbers of cannibalism (fish · m −2 ) and 
ISD is initial stocking perch density (fish · m −2 ) (Mélard et al.  1996b ). 
Cannibalism caused overall mortality rates of 3.0, 4.5, 6.7, 11.4 and 7.1 % at 
densities 95, 240, 480, 1,430 and 2,380 fish · m −2 , respectively. However, these 
authors found that cannibalism is not the main reason of overall mortality for 
ongrowing perch, when survival rate varied between 75.4 % and 92.2 % at 
perch density 1,430 and 95 fish · m −3 , respectively. Excluding cannibalism, the 
main reason of perch mortality during ongrowing phase is parasites, bacteria 
and stress that are indirectly affected by different perch densities and biomass 
(Mélard et al.  1996a ,  b ).  

16.6.8     Relationship Between Body Weight, Optimal Biomass 
and Production 

 In intensive farming, the optimal biomass of perch giving the maximal production 
depends of body weight. The higher is perch body weight, the higher optimal bio-
mass is. Optimal biomass ranges from 35 kg · m −3  for 5 g perch to 80 kg · m −3  for 
150 g fi sh. Relationship between optimal biomass (y) and body weight (x) is 
expressed as follow: y = 24 ×  0.23  (Fig.  16.6 , Mélard  2008 ). Production (y) is decreas-
ing when body weight increases (x) as shown by the following relationship: 
y = 824 ×  0.18  (Fig.  16.6 , Mélard  2008 ). Maximal daily production in intensive culture 
ranges from 0.6 kg m −3  for 5 g fi sh to 0.35 kg m −3  for 150 g perch. The combination 
of the two models gives the maximal potential of production of a fi sh farm in 
relation to fi sh body weight and the total volume of rearing tanks available in the 
facility. Thus, the maximal fi sh farm productivity is obtained when perch are reared 
around optimal biomass.
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16.7         Conclusion 

 Nowadays, three different production systems for perch culture during ongrowing 
phase are described: (1) traditional extensive polyculture system in earthen ponds, 
(2) semi-intensive culture farming using cage or tarpaulin tanks in lakes or sea bays 
or the combination of pond and RAS (Recirculating Aquaculture System(s)) culture 
and (3) intensive perch farming under RAS. Extensive and semi-intensive culture 
systems have many production limitations such as: suboptimal water temperature, 
acute risks of diseases, long production cycle, unpredictable production, etc. 
Therefore, intensive perch farming has been developed in Europe (mainly in 
Switzerland, Ireland and France) for more continuous and predictive marketable 
perch production. 

 Intensive ongrowing perch culture has to provide stable and optimal culture con-
ditions for rapid fi sh growth, shorter production cycle, year round and predictable 
production, fi sh stress and cannibalism reduction, resulting in higher survival rate. 
Currently perch ongrowing under intensive culture cannot be considered as a bottle-
neck for stable and high-quality perch production when rearing facilities and all 
husbandry conditions are carefully optimized in order to ensure signifi cant produc-
tion profi tability. Several factors such as: colour of tank walls, light regime and 
intensity, water temperature, water quality (including mainly oxygen, salinity, 
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  Fig. 16.6    Relationships between body weight, biomass and production level of perch reared at 
23 °C (Mélard  2008 )       
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ammonia and nitrite levels), disturbance during tank cleaning, fi sh size-sorting, den-
sity and biomass affect marketable perch production under intensive conditions. 

 Different tank wall colours with the combination of 12L:12D or 18L:6D light 
regime and light intensity between 200 and 1,100 lx are equally suitable for farming 
of ongrowing perch. Optimum temperature for rapid growth ranges from 22 to 
24 °C. Signifi cantly higher growth and survival rates of freshwater perch strains are 
recorded under freshwater or water with salinity under 4 ‰. Optimum oxygen level 
and saturation for perch ongrowing should be up to 5–6 mg O 2  · L −1  and 60–72 % 
oxygen saturation. Very low ammonia (0.3 mg N-NH 3  · L −1 ) and nitrite (0.5–0.7 mg 
NO 2  −  · L −1 ) concentrations may induce physiological changes and decrease growth 
in perch. Disturbance resulting from cultivation procedure like cleaning of tanks, 
service disturbance, fi sh size-sorting and other stressful events cause directly reduc-
tion of feed intake and an increase of energy expenditure and indirectly decreasing 
growth rate. The frequency of grading must be optimized by proper culture manage-
ment or using of monosex female population to reduce growth heterogeneity. 
Mortality of perch resulting from direct and indirect effect of handling is only a very 
small part of overall mortality, which is mainly caused by parasite and bacteria dis-
ease. Low and high stocking densities result in slower growth rates. Optimal stock-
ing biomass for production ranges from 10–20 kg · m −3  for 10 g perch to 60–70 kg · m −3  
for 150 g fi sh.     
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