
A Practical
Introduction
to Protégé

OWL

Session 1: Primitive Classes

Nick Drummond, Matthew Horridge,
Olivier Dameron, Alan Rector, Hai Wang

© 2006, The University of Manchester 2

‣ Tutorial Aims
‣ OWL Language Overview
‣ Language constructs

‣ Primitive Pizzas
‣ Creating a class hierarchy
‣ Basic relations

‣ Basic Reasoning
‣ Class consistency
‣ Your first defined class

‣ Q&A

Overview (morning)

© 2006, The University of Manchester 3

‣ Formal Semantics of OWL
‣ Harder but more fun

‣ Advanced Reasoning
‣ Defined Classes
‣ Using a reasoner for computing a classification

‣ Common Mistakes
‣ Q&A

Overview (afternoon)

© 2006, The University of Manchester

Aims of this morning

‣ Make OWL (DL) more approachable
‣ Get you used to the tool
‣ Give you a taste for the afternoon session

4

© 2006, The University of Manchester

Exposing OWL

5

© 2006, The University of Manchester

What is OWL?

6

‣ OWL is the Web Ontology Language

‣ It’s part of the
Semantic Web framework

‣ It’s a standard

© 2006, The University of Manchester

OWL has explicit formal semantics

Can therefore be used to capture knowledge in a
machine interpretable way

7

© 2006, The University of Manchester

‣ Describe something, rather than just name it
‣ Class (BlueThing) does not mean anything
‣ Class (BlueThing complete

 owl:Thing

 restriction (hasColour someValuesFrom (Blue)))
has an agreed meaning to any program accepting
OWL semantics

OWL helps us...

© 2006, The University of Manchester

What is the Semantic Web?

‣ A vision of a computer-understandable web
‣ Distributed knowledge and data in reusable

form
‣ XML, RDF(S), OWL just part of the story

9

© 2006, The University of Manchester

What is the Semantic Web?

Scientific American 2001:

10

Beware of th
e Hype

© 2006, The University of Manchester

OWL and the Semantic Web

‣ A little semantics goes a long way
‣ Start small
‣ OWL is not an everything or nothing language
‣ Much can be gained from using the simplest

of constructs and expanding on this later
‣ KISS

11

© 2006, The University of Manchester

OWL and XML

‣ XML is a syntax
‣ EXtensible Markup Language
‣ XML describes a tree structure
‣ XML was designed to improve interoperability

by standardising syntax

12

© 2006, The University of Manchester

OWL and RDF

‣ Another Semantic Web language
‣ Resource Description Framework
‣ RDF describes a graph of nodes and arcs,

each normally identified by a URI
‣ RDF statements are triples
‣ subject → predicate → object
‣ myhouse - islocatedIn - Manchester

‣ Semantics are limited and use is
unconstrained compared to OWL

13

© 2006, The University of Manchester

OWL and RDFS

‣ RDF Schema
‣ Adds the notion of classes to RDF
‣ Allows hierarchies of classes and properties
‣ Allows simple constraints on properties
‣ OWL has the same interpretation of some

RDFS statements (subsumption, domain and
range)

14

© 2006, The University of Manchester

OWL and Frames

‣ 2 different modelling paradigms
‣ Frames is object-oriented
‣ OWL is based on set theory

‣ Both languages supported by Protégé
‣ Native language is Frames
‣ Only basic import/export between them

‣ Differences between them big subject
‣ Overview talk by Hai Wang on Tuesday

15

© 2006, The University of Manchester

OWL and Databases

‣ Databases are about how data is stored
‣ OWL is for describing domain knowledge
‣ Databases are closed world, whereas OWL

is open world (more about this this afternoon)
‣ Triple stores are databases optimised for

storing RDF/OWL statements

16

© 2006, The University of Manchester

‣ Lite - partially restricted to aid
learning curve

‣ DL = Description Logic
Description Logics are a fragment of
First Order Logic (FOL) that are
decidable - this allows us to use DL
reasoners (more later)

‣ Full
unrestricted use of OWL constructs,
but cannot perform DL reasoning

lite

DL

Full

OWL comes in 3 Flavours

17

© 2006, The University of Manchester

‣ OWL is often thought of as an extension to
RDF which is not strictly true

‣ OWL is a syntax independent language that
has several common representations

‣ Many tools try to completely abstract away
from the syntax

Syntax

18

© 2006, The University of Manchester

‣ One of the clearer human-readable syntaxes

Class(SpicyPizza complete

 annotation(rdfs:label "PizzaTemperada"@pt)

 annotation(rdfs:comment "Any pizza that has a spicy topping

 is a SpicyPizza"@en)

 Pizza

 restriction(hasTopping someValuesFrom(SpicyTopping))

)

OWL Syntax: abstract syntax

© 2006, The University of Manchester

‣ Recommended for human-readable fragments

OWL Syntax: N3

default:SpicyPizza

 a owl:Class ;

 rdfs:comment "Any pizza that has a spicy topping is a
 SpicyPizza"@en ;

 rdfs:label "PizzaTemperada"@pt ;

 owl:equivalentClass

 [a owl:Class ;

 owl:intersectionOf (default:Pizza [a owl:Restriction ;

 owl:onProperty default:hasTopping ;

 owl:someValuesFrom default:SpicyTopping

])

] .

© 2006, The University of Manchester

‣ Recommended for serialisation

OWL Syntax: RDF/XML

 <owl:Class rdf:ID="SpicyPizza">

 <rdfs:label xml:lang="pt">PizzaTemperada</rdfs:label>

 <rdfs:comment xml:lang="en">Any pizza that has a spicy topping is a SpicyPizza</
rdfs:comment>

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Pizza"/>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasTopping"/>

 </owl:onProperty>

 <owl:someValuesFrom rdf:resource="#SpicyTopping"/>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

© 2006, The University of Manchester

Tools “Hiding the Syntax”

‣ In the tools, you are more
likely to find OWL looking
more like a tree of classes

‣ And their descriptions

© 2006, The University of Manchester

Person Country

Class (concept)

Animal

Individual (instance)

Belgium

Paraguay

China
Latvia

Elvis

Hai

TBL

Kylie

S.Claus

Rudolph

Flipper

lives_in

lives_in

lives_in

has_pet

has_pet

arrow = relationship
label = Propertyha

s_
pe

t

OWL Constructs Overview

© 2006, The University of Manchester

OWL Constructs: Classes

‣ Eg Mammal, Tree, Person, Building, Fluid
‣ Classes are sets of Individuals
‣ aka “Type”, “Concept”, “Category”, “Kind”
‣ Membership of a Class is dependent on its logical

description, not its name
‣ Classes do not have to be named – they can be

logical expressions – eg things that have colour Blue
‣ A Class should be described such that it is possible

for it to contain Individuals (unless the intention is to
represent the empty class)

24

© 2006, The University of Manchester

OWL Constructs: Individuals

‣ Eg me, you, this tutorial, this room
‣ Individuals are the objects in the domain
‣ aka “Instance”, “Object”
‣ Individuals may be (and are likely to be) a member of

multiple Classes

25

© 2006, The University of Manchester

OWL Constructs: Properties

‣ Eg hasPart, isInhabitedBy, isNextTo, occursBefore
‣ Object Properties are used to relate Individuals
‣ Datatype Properties relate Individuals to data values
‣ We generally state that “Individuals are related along

a given property”
‣ Relationships in OWL are binary and can be

represented in triples:
‣ subject → predicate → object
‣ nick → worksWith → matthew

© 2006, The University of Manchester

A note on naming

‣ Named things (classes, properties and individuals)
have unique identifiers

‣ In Semantic Web languages these are URIs
‣ Something with the same URI is the same object
‣ This is so we can refer to things in someone else’s

ontology

‣ Full URIs are hidden in most tools:
http://www.co-ode.org/ontologies/pizza/2006/07/18/pizza.owl#PizzaTopping

is a bit harder to read than:
PizzaTopping

‣ URIs do not have to be URLs
27

© 2006, The University of Manchester

What can be said in OWL?

‣ “All pizzas are a kind of food”
‣ “No kinds of meat are vegetables”
‣ “All pizzas must have only one base but at

least one topping”
‣ “Ingredients must be some kind of food”
‣ “Any pizza that has no meat or fish on it must

be vegetarian”
‣ “Interesting pizzas have at least 4 toppings”
‣ “Spicy pizzas are pizzas that have at least

one ingredient that is spicy”
28

© 2006, The University of Manchester

The Pizza Ontology

29

proudly brought to you by

© 2006, The University of Manchester

Our Domain

‣ Pizzas have been used in Manchester
tutorials for years

© 2006, The University of Manchester

‣Tutorial developed by BioHealth
Informatics Group in Manchester
(in alphabetical order)
Mike Bada, Sean Bechhofer, Carole
Goble, Matthew Horridge, Ian Horrocks,
Alan Rector, Jeremy Rogers, Robert
Stevens, Chris Wroe

Pizzas...

31

© 2006, The University of Manchester

Pizzas...

‣ are fun
‣ are internationally known
‣ are highly compositional
‣ are limited in scope
‣ are fairly uncontroversial
‣ Although arguments still break out over

representation
‣ ARGUING IS NOT BAD!

32

© 2006, The University of Manchester

You are the Expert

‣ Most often it is not the domain expert that
formalises their knowledge

‣ Because of the complexity of the modelling
task it is normally a specialist “knowledge
engineer”
Hopefully, as tools get easier to use, this will change

‣ Having access to experts is critical for most
domains

‣ Luckily, we are all experts in Pizzas, so we
just need some material to verify our
knowledge…

33

© 2006, The University of Manchester

Reference Materials

‣ Having references to validate decisions, and
act as provenance can be useful for
maintaining an ontology

‣ Mistakes, omissions and intentions can be
more easily traced if a reference can be made
‣ When building, we highly recommend documenting

your model as you go – keeping provenance
information is a good way of doing this

‣ We have pizza menus available for inspiration

© 2006, The University of Manchester

Our Ontology

‣ Some things get built just to impress

35

‣ Ontologies are not just there to look pretty
‣ Have an application in mind before starting

© 2006, The University of Manchester

Demo Ontology

Our Pizza Ontology is available from:
www.co-ode.org/ontologies/pizza/

36

© 2006, The University of Manchester

Classes vs Instances

‣ You may note that the ontology consists
almost completely of Classes

‣ Ontologies are about knowledge, so we only
use individuals when necessary to describe a
class

‣ Be careful adding Individuals to your ontology
as they can restrict its reusability
‣ eg you cannot create a new kind of Cheese if

Cheese is an individual

37

© 2006, The University of Manchester

Our Application

www.co-ode.org/downloads/pizzafinder/

© 2006, The University of Manchester

Pizza Finder Architecture

Controller

Model

View

© 2006, The University of Manchester

Pizza Finder Architecture

Reasoner

Ontology

Interface

© 2006, The University of Manchester

Plug a Pizza Ontology

‣ The PizzaFinder application has been
developed so that you can create your own
pizza ontology and plug it in to see it in action

‣ At the end of the day, let us know if you want
to try this

41

© 2006, The University of Manchester 42

© 2006, The University of Manchester

‣ core is based on Frames (object oriented)
modelling

‣ has an open architecture that allows other
modelling languages to be built on top

‣ supports development of plugins to allow
backend / interface extensions

‣ supports OWL through the Protégé-OWL
plugin

So let’s have a look…

Protégé-OWL = Protégé + OWL

43

© 2006, The University of Manchester

Protégé-OWL

© 2006, The University of Manchester

Loading OWL files

45

‣ If you only have an OWL
file:
- File → New Project
- Select OWL Files as the type
- Tick Create from existing sources
- Next to select the .owl file

‣ If you’ve got a valid project file:
- File → Open Project
- select the .pprj file

© 2006, The University of Manchester

Saving OWL Files

‣ Select File → Save Project As
A dialog (as shown) will pop up

‣ Select a file directly by clicking the button on the top right
You will notice that 2 files are created
.pprj – the project file
 this just stores information about the GUI
 and the workspace
.owl – the OWL file
 this is where your ontology is stored in
 RDF/OWL format

© 2006, The University of Manchester

Protégé-OWL Tabs

47

‣ OWLClasses - class hierarchy and definitions
‣ Properties - property hierarchies and definitions
‣ Forms - edit forms for instances/metaclasses
‣ Individuals - create and populate individuals
‣ Metadata - ontology management and annotation

© 2006, The University of Manchester

OWL Classes Tab
Class name

Disjoints
widget

Conditions Widget

Class annotations (for class
metadata and documentation)Asserted Class hierarchy

Class-specific tools (find usage etc)

© 2006, The University of Manchester

Building a Class Hierarchy

49

© 2006, The University of Manchester

Subsumption

50

© 2006, The University of Manchester

‣ Superclass/subclass relationship, “isa”
‣ All members of a subclass are members of its

superclasses

What is Subsumption?

owl:Thing: superclass of all OWL Classes

Pizza

Food
‣Food subsumes Pizza
‣Food is a superclass of Pizza
‣Pizza is a subclass of Food
‣All members of Pizza are also
members of Food
‣Everything is a member of
owl:Thing

© 2006, The University of Manchester

Class Hierarchy

‣ Subclass (Subsumption)
hierarchy

‣ Structure as asserted by the
ontology engineer

‣ owl:Thing is the root class
‣ Primitive class
‣ Defined class
‣ Find
‣ Superclass hierarchy

© 2006, The University of Manchester

Create a Class Hierarchy

‣ Create the hierarchy shown
‣ new subclass of selected
‣ new sibling of selected

‣ You can move classes around
with drag and drop

‣ You can delete classes if
needed

© 2006, The University of Manchester

‣ Create subclasses of PizzaTopping
‣ Think of some abstract classes to categorise

your toppings
‣ Include at least the following 4:

‣ MeatTopping
‣ CheeseTopping
‣ MozzarellaTopping
‣ TomatoTopping

‣ More examples:

Create a Class Hierarchy

54

VegetableTopping

TomatoTopping

PepperTopping

SundriedTomato
Topping

© 2006, The University of Manchester

Create a Class Hierarchy

‣ Create a MeatyVegetableTopping
‣ To add multiple superclasses to a class
‣ first create the class
‣ then use the conditions widget to add a new

superclass
‣ make sure “Necessary” is highlighted
‣ select an existing class to add

55

© 2006, The University of Manchester

‣ You will notice that we use naming
conventions for our ontology entities

‣ Typically, we use CamelNotation with a
starting capital for Classes

‣ Use whatever conventions you like
‣ It is helpful to be consistent – especially when

trying to find things in your ontology

Create a Class Hierarchy

© 2006, The University of Manchester

What is a
MeatyVegetableTopping?

‣ Does it make sense?
‣ Can we check for mistakes like this?
‣ If we have a decent model, we can use a

reasoner
‣ This is one of the main advantages of using a

logic-based formalism such as OWL-DL

57

© 2006, The University of Manchester

Checking our Model

‣ We will explain the reasoner later
‣ Currently it shows us nothing
‣ We have something missing from the model

58

© 2006, The University of Manchester

Disjoints

59

© 2006, The University of Manchester

Disjoints

Regardless of where they exist in the hierarchy,
OWL assumes that classes may overlap

MeatTopping VegetableTopping

By default, an individual could be both a MeatTopping and a
VegetableTopping at the same time

© 2006, The University of Manchester

Disjoints

Stating that 2 classes are disjoint means

MeatTopping VegetableTopping

Nothing can be both a MeatTopping and a VegetableTopping at
the same time

MeatTopping can never be a subclass of VegetableTopping
(and vice-versa)

This can help us find errors

© 2006, The University of Manchester

Disjoints

‣ Disjoints are inherited down the subsumption
hierarchy

62

Pizza PizzaTopping

‣ Something that is a TomatoTopping cannot
be a Pizza because its superclass,
PizzaTopping, is disjoint from Pizza

TomatoTopping

© 2006, The University of Manchester

ClassesTab: Disjoints Widget

 Add siblings as disjoint
 Add new disjoint Remove disjoint siblings

List of disjoint classes

© 2006, The University of Manchester

Add Disjoints

‣ At each level in the ontology decide if the
classes should be disjoint

‣ Use “Add all siblings” and choose “mutually”
from the dialog

‣ You should now be able to select every class
and see its siblings in the disjoints widget (if it
has any)

© 2006, The University of Manchester

Checking disjoints

‣ Now that we’ve asserted some disjoints we
have enough to start checking the consistency
of our model

‣ Time for some magic...

65

© 2006, The University of Manchester

Reasoners and Inference

66

© 2006, The University of Manchester

Reasoner:
A clever (probably magic) black box designed by clever people

Best to let them worry about how they work

? ??

! ! !

Reasoners and Inference

© 2006, The University of Manchester

Reasoners and Inference:
Basics

‣ Reasoners are used to infer information that
is not explicitly contained within the ontology

‣ You may also hear them being referred to as
classifiers

‣ Reasoners can be used at runtime in
applications as a querying mechanism (esp
useful for smaller ontologies)

‣ We will use one during development as an
ontology “compiler”

68

© 2006, The University of Manchester

Reasoners and Inference:
Services

‣ Standard reasoner services are:
‣ Consistency Checking
‣ Subsumption Checking
‣ Equivalence Checking
‣ Instantiation Checking

69

© 2006, The University of Manchester

Reasoners and Protégé

‣ Protégé-OWL supports the use of reasoners
implementing the DIG interface

‣ Protégé-OWL can connect to reasoners that
provide an http:// connection

FaCT++ Pellet

KAON2

© 2006, The University of Manchester

Connecting to a reasoner

71

‣ Run a reasoner locally (or on a server)
‣ Note the address
‣ local typically http://localhost:<port_number>

© 2006, The University of Manchester

‣ In Protégé menu, go to:
 OWL → Preferences

‣ Set the reasoner URL to match

Connecting a Reasoner

72

© 2006, The University of Manchester

Accessing the Reasoner
Classify taxonomy
(and check consistency)

Just check consistency
(for efficiency)

Compute inferred types
 (for individuals)

© 2006, The University of Manchester

Reasoning about our Pizzas

74

‣ When the reasoner has
finished, you will see the
inferred hierarchy

‣ Inferences are reported in the
reasoner dialog and in a
separate results window

‣ inconsistent classes turn red
‣ moved classes turn blue
‣ close this window

© 2006, The University of Manchester

Why is MeatyVegetableTopping
Inconsistent?

‣ MeatyVegetableTopping is a subclass of two
classes we have stated are disjoint

‣ The disjoint means nothing can be a MeatTopping
and a VegetableTopping at the same time

‣ This means that MeatyVegetableTopping can
never contain any individuals

‣ The class is therefore inconsistent
‣ This is what we expect!
‣ It can be useful to create “probe” classes we

expect to be inconsistent to “test” your model

75

© 2006, The University of Manchester

In a tangle?

‣ You might have several inconsistent classes
with multiple asserted parents

‣ We call this a tangle
‣ As we have seen, a class cannot have 2

disjoint parents – it will be inconsistent
‣ Removing disjoints between multiple parents

by hand is tricky
‣ We will later show you some better ways to

manage your tangle

© 2006, The University of Manchester

What have we got?

‣ We’ve created a tangled graph of mostly
disjoint classes

Pizza

PizzaTopping

TomatoTopping
PizzaBase

© 2006, The University of Manchester

What have we got?

‣ Although this could be very useful, its not
massively exciting is it?

Pizza

PizzaTopping

TomatoTopping
PizzaBase

© 2006, The University of Manchester

What have we got?

‣ Apart from “is kind of” (subsumption) and “is
not kind of” (disjoint), we currently don’t have
any other information of interest

Pizza

PizzaTopping

TomatoTopping
PizzaBase

© 2006, The University of Manchester

What have we got?

‣ We want to say more about Pizzas
‣ eg All Pizzas must have a PizzaBase

Pizza

PizzaTopping

TomatoTopping
PizzaBase

© 2006, The University of Manchester

Relationships in OWL

81

© 2006, The University of Manchester

Relationships in OWL

‣ In OWL-DL, relationships can only be formed
between Individuals or between an
Individual and a data value
(In OWL-Full, Classes can be related, but this cannot be reasoned with)

‣ Relationships are formed along Properties
‣ We can restrict how these Properties are

used:
‣ Globally – by stating things about the Property itself
‣ Or locally – by restricting their use for a given Class

© 2006, The University of Manchester

OWL Properties

83

isFromSpecies

hasLimbs

hasCuteness

isCoveredWith

© 2006, The University of Manchester

‣ Object Property – relate
Individuals

‣ Datatype Property – relate
Individuals to data
(int, string, float etc)

‣ Annotation Property – for
attaching metadata to
classes, individuals or
properties

‣ Note that Properties can be
in a hierarchy

Property Browser

© 2006, The University of Manchester

Subproperties

‣ What does subproperty mean?

85

‣isChildOf
‣isDaughterOf

Kirsty Julie
isDaughterOf

isChildOf

‣ You cannot mix property types in the tree
ie Object properties cannot be subproperties
of Datatype properties and vice-versa

© 2006, The University of Manchester

‣ There are many other things we can say
about properties

‣ These are covered in the afternoon

Property Features

86

© 2006, The University of Manchester

Creating Object Properties

87

‣ Switch to the properties
Tab

‣ Make sure the object
property hierarchy is
showing

‣ Create the property
hierarchy shown

‣ We will normally use the
subproperties and infer
the superproperties

© 2006, The University of Manchester

Using Properties

88

‣ We now have some properties we want to use
to describe Pizzas

‣ We can just use properties directly to relate
individual pizzas

‣ But, we’re not creating individuals
‣ Instead, we are going to make statements

about all members of the Pizza Class

© 2006, The University of Manchester

Using Properties with Classes

‣ To do this, we must go back to the Pizza class
and add some further information

‣ This comes in the form of Restrictions
‣ We create Restrictions in the Conditions

widget
‣ Conditions can be any kind of Class – you

have already added Named superclasses in
the Conditions Widget. Restrictions are a
type of Anonymous Class

89

© 2006, The University of Manchester

Conditions Widget

Conditions asserted by the ontology engineer

Add different types of condition

Description
of the class Conditions inherited from superclasses

Definition
of the class
(later)

© 2006, The University of Manchester

Conditions Widget
Logical (Anonymous) Classes

Add Named Superclass

Create Restriction (next)

Create Class Expression

© 2006, The University of Manchester

Creating Restrictions

Restriction
Type

Restricted Property

Filler
Expression

Syntax
check

Expression
Construct
Palette

© 2006, The University of Manchester

What does this mean?

►“If an individual is a member of this class, it
is necessary that it has at least one
hasBase relationship with an individual from
the class PizzaBase”

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

►restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

© 2006, The University of Manchester

What does this mean?

►“Every individual of the Pizza class must
have at least one base from the class
PizzaBase”

►restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

© 2006, The University of Manchester

What does this mean?

►“There can be no individual, that is a
member of this class, that does not have
at least one hasBase relationship with an
individual from the class PizzaBase”

►restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

Pizza PizzaBase
hasBase

hasBase

hasBase

hasBase

© 2006, The University of Manchester

Why? Restrictions are Classes

►Restrictions and Class Expressions are
anonymous classes

►they contain the set of all individuals that
satisfy the condition

►restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

hasBase some
PizzaBase PizzaBase

hasBase

hasBase

hasBase

hasBase

© 2006, The University of Manchester

Why? Necessary Conditions are
Superclasses

►Each necessary condition is a superclass
►Pizza is a subclass of all the things that

have a pizza base
►All pizzas must have a pizza base

►restriction: hasBase some PizzaBase
on Class Pizza as a necessary condition

hasBase some
PizzaBase PizzaBase

hasBase

hasBase

hasBase

hasBase

Pizza

© 2006, The University of Manchester

‣ Create a subclass of Pizza, NamedPizza
‣ Create a named pizza, Margherita
‣ Add 2 restrictions on Margherita:

hasTopping some MozzarellaTopping
hasTopping some TomatoTopping
“All Margheritas have at least one topping that
is Mozzarella and one that is Tomato”

Create your first pizza

98

© 2006, The University of Manchester

‣ Create a couple more named pizzas and add
the appropriate toppings using existential
restrictions

Create more pizzas

99

© 2006, The University of Manchester

Restriction Types

∃ Existential, someValuesFrom “some”, “at least one”

∀ Universal, allValuesFrom “only”

∍ hasValue “equals x”

= Cardinality “exactly n”

≤ Max Cardinality “at most n”

≥ Min Cardinality “at least n”

© 2006, The University of Manchester

‣ All classes in our ontology so far are
Primitive

‣ Primitive Class = only Necessary Conditions
‣ We condone building

a disjoint tree of
primitive classes

‣ This is also known as
a Primitive Skeleton

Single Asserted
Superclasses

101

© 2006, The University of Manchester

Polyhierarchies

‣ In the afternoon session you will create a
VegetarianPizza

‣ Some of our existing Pizzas could be types of
VegetarianPizza, SpicyPizza and/or
CheeseyPizza

‣ We need to be able to give them multiple
parents in a principled way

‣ We could just assert multiple parents like we
did with MeatyVegetableTopping (without
disjoints)

BUT…
102

© 2006, The University of Manchester

Multiple Asserted
Superclasses

‣ We lose some encapsulation of knowledge
‣ Why this class is a subclass of that one

let the reasoner do it!
103

‣ Adding a new abstraction
becomes difficult because
all subclasses may need
to be updated

‣ Extracting from a graph is
harder than from a tree

© 2006, The University of Manchester

Defined Classes

104

© 2006, The University of Manchester

CheeseyPizza

‣ “A CheeseyPizza is any pizza that has some
cheese on it”

‣ We would expect then, that some pizzas
might be both named pizzas and cheesey
pizzas (among other things later on)

‣ We can use the reasoner to help us produce
this polyhierarchy without having to assert
multiple parents and so avoid a tangle

105

© 2006, The University of Manchester

‣ We often create primitive classes and then migrate
them to defined classes

‣ All of our defined pizzas will be direct subclasses of
Pizza

‣ Create a CheesyPizza Class (do not make it disjoint)
‣ add a restriction:

“Every CheeseyPizza must have at least one
CheeseTopping”

Creating a CheeseyPizza

© 2006, The University of Manchester

Classifying Primitive Classes

107

‣ Classifying this ontology
does nothing

‣ Our definition is
“Every CheeseyPizza
must have at least one
CheeseTopping”

‣ What we want is
“A CheeseyPizza is any
pizza that has some
cheese on it”

© 2006, The University of Manchester

‣ Lets move the conditions we’ve created
‣ There is a useful button for turning this into a

defined class at the bottom of the class editor
‣ Notice the conditions are

now in the “Necessary &
Sufficient” block

Creating a Defined Class

108

© 2006, The University of Manchester

Classifying a Defined Class

‣ The inferred hierarchy
now shows many (blue)
subclasses of
CheeseyPizza

‣ The reasoner has been
able to infer that any
Pizza that has at least
one topping from
CheeseTopping is a
CheeseyPizza

© 2006, The University of Manchester

Why? Necessary & Sufficient
Conditions

‣ Each set of necessary & sufficient conditions
is an Equivalent Class

Pizza hasTopping some
CheeseTopping

CheeseyPizza

‣ CheeseyPizza is equivalent to the
intersection of Pizza and
hasTopping some CheeseTopping

© 2006, The University of Manchester

Why? Necessary & Sufficient
Conditions

‣ Each set of necessary & sufficient conditions
is an Equivalent Class

Pizza hasTopping some
CheeseTopping

CheeseyPizza

‣ Classes, all of whose individuals fit this
definition are found to be subclasses of
CheeseyPizza

MargheritaPizza

© 2006, The University of Manchester

Untangling

112

‣ We can see that certain
Pizzas are now classified
under multiple parents

‣ MargheritaPizza can be
found under both
NamedPizza and
CheeseyPizza in the
inferred hierarchy

© 2006, The University of Manchester

Untangling

‣ However, our unclassified version of the
ontology is a simple tree, which is much
easier to maintain

‣ We’ve now got a polyhierarchy without
asserting multiple superclass relationships

‣ Plus, we also know why certain pizzas have
been classified as CheeseyPizzas

© 2006, The University of Manchester

Untangling

‣ We don’t currently have many kinds of
primitive pizza but its easy to see that if we
had, it would have been a substantial task to
assert CheeseyPizza as a parent of lots, if
not all, of them

‣ And then do it all over again for other defined
classes like MeatyPizza or whatever

Mission Successful!

© 2006, The University of Manchester

Summary

You should now be able to:
‣ identify components of the Protégé-OWL

Interface
‣ create a hierarchy of Primitive Classes
‣ create Properties
‣ create some basic Restrictions on a Class

using Existential qualifiers
‣ create a simple Defined Class
‣ and...

115

© 2006, The University of Manchester

Summary

You should now be able to:
‣ go for at least a week without wanting to see

116

© 2006, The University of Manchester

Additional Material

‣ OWLViz

117

© 2006, The University of Manchester

OWLViz Tab

Polyhierarchy
tangle

View Inferred ModelView Asserted Model
Show All Classes

