Semantic Web

Semantic Web Architecture

Semantic Web Architecture

- Formalized components and their relationships
 - What technologies make up Semantic Web
 - What are the dependencies between components
- Roadmap for steps of developing the Semantic Web

SemWeb Architecture: Requirements

- Extensibility
 - Each layer should extend the previous one(s)
- Support for data interchange
 - Using data from one source in other applications
- Support for ontology description with different complexity
 - Including rules
- Support for data query
- Support for data provenance and trust evaluation

Semantic Web Stack

UNICODE, URI and XML

- UNICODE is the standard international character set
 - E.g. used to encode the data in the repository
- Uniform Resource Identifiers (URIs) identify things and concepts
 - E.g. used to indentify resources on the Web and in the repository
- eXtensible Markup Language (XML) is a markup language used for data exchange
 - E.g. format that can be wrapped into RDF and imported into the repository

RDF, RDFS and OWL

- Resource Description Framework (RDF) is the HTML of the Semantic Web
 - Simple way to describe resources on the Web
 - Based on triples <subject, predicate, object>
 - Various serializations, including one based on XML
 - A simple ontology language (RDFS)
 - E.g. language used to store the data in the repository
 - More in Lecture 3
- Web Ontology Language (OWL) is a more complex ontology language than RDFS
 - Layered language based on DL
 - Overcomes some RDF(S) limitations
 - E.g. ontology language used to define the schemas used in the repository
 - More in Lecture 7

SPARQL and Rule Languages

• SPARQL

- Query language for RDF triples
- A protocol for querying RDF data over the Web
- E.g. language used to query the repository from the user interface
- More in lecture 6
- Rule languages (esp. Rule Interchange Format RIF)
 - Extend ontology languages with proprietary axioms
 - Based on different types of logics
 - Description Logic
 - Logic Programming
 - E.g. used to enable reasoning over data to infer new knowledge
 - More in lecture 8

Logics, Proof and Trust

- Unifying logic
 - Bring together the various ontology and rule languages
 - Common inferences, meaning of data
- Proof
 - Explanation of inference results, data provenance
- Trust
 - Trust that the system performs correctly
 - Trust that the system can explain what it is doing
 - Network of trust for data sources and services
 - Technology and user interface
- Many open problems, topics for future research

Foundations

Identifier, Resource, Representation

URI, URN, URL

• A Uniform Resource Identifier (URI) is a string of characters used to identify a name or a resource on the Internet

- A URI can be a URL or a URN
- A Uniform Resource Name (URN) defines an item's identity
 - the URN *urn:isbn:0-395-36341-1* is a URI that specifies the identifier system, i.e. International Standard Book Number (ISBN), as well as the unique reference within that system and allows one to talk about a book, but doesn't suggest where and how to obtain an actual copy of it
- A Uniform Resource Locator (URL) provides a method for finding it
 - the URL *http://www.sti-innsbruck.at/* identifies a resource (STI's home page) and implies that a representation of that resource (such as the home page's current HTML code, as encoded characters) is obtainable via HTTP from a network host named www.sti-innsbruck.at

URI Syntax

• Examples

- http://www.ietf.org/rfc/rfc3986.txt
- mailto:John.Doe@example.com
- news:comp.infosystems.www.servers.unix
- telnet://melvyl.ucop.edu/

• URI Syntax scheme: [//authority] [/path] [?query] [#fragid]

- The scheme distinguishes different kinds of URIs
- Authority normally identifies a server
- Path normally identifies a directory and a file
- Query adds extra parameters
- Fragment ID identifies a secondary resource

URI Syntax cont'd

- Reserved characters (like /:?#@\$&+*)
- Many allowed characters
- Rest percent-encoded from UTF-8
 - http://google.com/search?q=technikerstra%C3%9Fe
- IRI Internationalized Resource Identifier
 - Allows whole UNICODE
 - Specifies transformation into URI mostly UTF-8 encoding

URI Schemes

- Schemes partition the URI space into subspaces
- Schemes can add or clarify properties of resources
 - Ownership (how authorities are formed)
 - Persistence (how stable the URIs should be)
 - Protocol (default access protocol)

Scheme	Description	RFC
file	Host-specific file names	[<u>1738]</u>
ftp	File Transfer Protocol	[<u>1738]</u>
http	Hypertext Transfer Protocol	[<u>2616</u>]
https	Hypertext Transfer Protocol Secure	[<u>2818]</u>
im	Instant Messaging	[<u>3860]</u>
imap	internet message access protocol	[<u>5092</u>]
ipp	Internet Printing Protocol	[<u>3510]</u>
iris	Internet Registry Information Service	[<u>3981]</u>
ldap	Lightweight Directory Access Protocol	[<u>4516</u>]
mailto	Electronic mail address	[<u>2368]</u>
mid	message identifier	[2392]

From http://www.iana.org/assignments/uri-schemes.html

Questions?

