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Introduction

The aim of this text is to introduce some basic methods which can be useful
in economic applications. More precisely, we are interested in following parts of
Operations Research

• Linear optimisation – a construction of mathematical models, a graphical
solution, a simplex method, SW for the solution of LO models, an economic
interpretation of the solution.

• Multiple-criteria decision-making (MCDM) – construction of the weights,
methods for MCDM.

• Data Envelopment Analysis (DEA) – identification of effective units, identi-
fication of problems for ineffective ones.

• Mathematical methods in Project Management – project network, Critical
Path Method (CPM), PERT Method, Optimal cost and optimal duration of
the project.

All methods of Operations Research follow the same scheme in fact. The steps
of the procedure are presented in the picture .

The first point is the identification of the problem, the recognizing of Operations
Research problem and exact definition of the problem (it includes for example
solution requirements and so on).

The second step is the issue of information research. We need to recognize
important information which we need to involve in the solution procedure.

The third step is the definition of the problem in a mathematical way, formu-
lation of the mathematical problem. (In this part we must identify the type of the
problem.)

Then, we can start with the solution, we apply some of the suitable techniques
of Operations Research furthermore we obtain a solution to our problem.

In the last part, we must explain a mathematical solution in an economical
approach and we can also arrange the so-called post-optimization analysis. It
means, for example, to examine how does the solution depend on initial values and
so on.
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INTRODUCTION

Figure 1: Steps of a solution.
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1 Linear Optimisation

Linear optimisation solves the problems of optimizing of some (linear) function
(objective function) subject to some (linear) constraints. There are several types
of problems which are included in this part of Operations Research. One of the
typical types of these problems is so-called production problem.

In the production problem, we maximise the profit under some restrictions.
Typically, the company wants to maximise its profit and the available supplies,
resources and capacities are known. The question is what the optimal use of these
items is?

To illustrate such problems better, let us formulate a prototype example. (It
is Standard Maximum Problem, in which we are asked to find a solution
maximising profit subject to given conditions.)

Example 1.1 (The Best Glass Co.) The Best Glass Co. produces high-quality
glass windows. Now, they plan to use the remaining time of their production
lines to start with the production of two new types of windows – let us call
them Windows 1 and Window 2. All of these windows must go through three
production lines, where the capacities of the lines are 60, 60, 85 hours. It
is known that the unit of the first window type needs 2 hours at the first
production line, 6 at the second one and 10 hours at the last production line.
The unit of Windows 2 needs 10 hours at the first production line, 6 at the
second one and 5 hours at the last production line.

The marketing division considers that the company could sell as many of
either product as could be produced and it is supposed that the profit from
each unit of Windows 1 would be 30 thousand dollars and from each unit of
Windows 2 45.

It is not clear which mix of these two products would be most profitable.

Remark. The prototype example is a classic example of a problem for linear optimi-
zation – The Standard Maximum Problem. However, there exist many other
types of problems which can be solved by linear optimisation methods, too. For
example The Standard Minimum Problem – minimisation of cost under some
conditions, The Diet Problem – optimal mixing of food to get daily required of
nutrient with the lowest possible cost, The Transportation Problem – mini-
misation of transportation cost if we need to ship a given amount of commodity
from producers to markets, The Optimal Assignment Problem – the optimal
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1 LINEAR OPTIMISATION

Figure 1.1: Linear Optimisation Process.

assignment for example of workers to different jobs to get the best productivity;
and so on. Some of these types of problems we will introduce later more precisely.

The solution to these problems can be based on the same method (simplex
method), they differ only in the formulation of the issues.

Also, particular methods of solution for some problem exist (more effective) or
methods for an issue where variables must be integers. However, it does not aim of
this text to introduce these methods. Algorithms which allow us to solve integer
linear optimisation are usually implemented in the software. Since the formulation
of the problem and interpretation of the solution is the same, we would take care
of it. On the other hand, in such case, the sensitivity analysis is not available (the
sensitive analysis comes out from Simplex method).

Now, let us introduce the process of the solution of LO problems. First, let
us go back to the table given in the Introduction and show this table for Linear
Optimisation process, see table 1.

In this text, we suppose that we know the economic problem and our aim is to
continue with the solution. Prototype example is the formulation of the economic
issue – the problem was identified, and also all the necessary information was given.

Hence, we should continue with the third step — formulation of the mathe-
matical model – linear optimisation (programming) model. It is a mathematical
representation of the economic (LP) model.

How to do it? The steps of this are described in the following table 1.
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Figure 1.2: Construction of LO models.

As we can see from the picture, first we must identify the decision variables of
the model. The decision variables are in contrast to problem data. The data are
values that are either given or can be directly calculated from the given problem.
Decision variables are some unknown values which the decision maker wants to
know. In this example, the variables are the numbers of packages for each type of
windows. Because in fact, the question in the example is how many packages of
Windows 1 and how many packages of Windows 2 should the company produce to
maximise its profit? So, we put x1, resp. x2 for the number of produced units of
Windows 1, resp. 2. Then we search for the values of x1 and x2.

If we stated the decision variables, then we can start with the formulation of
the linear programming (mathematical) model. Every linear optimisation model
has three parts, see the picture 1.

The first part is the part of the objective function. There is the function which
we want to, and there is also set what type of optimisation we want to do (typically
to maximise or to minimise).

The second part is part of the main constraints. As was written above objective
and all constraints functions must be linear; it means it must be in the form of the
sum of constants multiplied by variables. The main constraints are all constraints
which are explicitly given in the formulation of the problem (in our case, the
restrictions on the capacity of the lines).

The last part is the part of constraints on variables – typically non-negativity
of the variables, in special cases also integer type of variable, or binary type.

Let us formulate a prototype example to construct its linear optimisation model.
Hence the economic problem is given, and our aim is to construct the linear

optimisation model. The first step of this construction is the identification of the
decision variables.
Identification of the Decision Variables

In the prototype example, it can seem that there are two possibilities of decision
variables – the number of hours at each production line or number of produced
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1 LINEAR OPTIMISATION

Figure 1.3: Linear Optimisation Model.
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units of each window type.
How to recognise which of these decision variables are the correct ones?
Let us suppose that we decide to set the number of hours to spend by the

products at the production lines as the decision variables. Then, after the solution
of the problem, the result would be the answer to the question of how many hours
should spend both types of windows at each product line. Is it what the decision
maker would like to know? Does it give him the answer to his question on how to
achieve the best profit? No. He does not know how to reach it. So, it was not the
correct choice.

Therefore, the decision variables will be:

x1 the quantity of Windows 1 to produce;

x2 the quantity of Windows 2 to produce.

Then, if we solve the problem, we answer the question of how many units of
Windows 1 and how many units of Windows 2 the company should produce to
optimise its profit. And this is what the manager would like to know.

If we have identified the decision variables, we can specify the objective function.
Determination of the objective function

In the prototype example, the company aims to maximise its profit. The profit
depends on the number of produced units. It is known what the profit from each
unit is. Hence, the whole profit can be written as

30x1 + 45x2,

where x1, x2 are (as was written above) decision variables which give us the number
of units of Windows 1, resp. 2 to produce.

Hence, we can write the objective function as

max 30x1 + 45x2.

Let us remark, that it is also essential to write the type of objective function
(to write if we want to maximise or minimise it).

Now, we can continue with the construction of constraints.
Identification of Constraints The Best Windows Comp. wants to maximise its
profit, but they could not produce as many units as they want, they are limited
by some restrictions. In our prototype example, they are limited by the capacities
of producing lines. We must all of these limits express as the constraints.

So, let us look more carefully at the capacity of the producing line 1. We know,
that there are 60 hours available and that each unit of Windows 1 spends here 2
hours. Hence, if we produce x1 units of Windows 1, we use 2x1 of the capacity fo
the first production line. Each unit of Windows 2 needs 10 at this line, hence x2
units needs 10x2 hours. Therefore, we can write:

2x1 + 10x2 ≤ 60.

11



1 LINEAR OPTIMISATION

Similarly, we get for the second line:

6x1 + 6x1 ≤ 60

and for the third line:
10x1 + 5x2 ≤ 85.

Now, it seems that we are finished with constraints. It appears that there are
no other ones. However, it is not true. We must add constraints which are not
explicitly written in the problem but which must be fulfilled too. Typically, non-
negativity of variables. In the prototype example, the decision variables are the
number of produced units. Hence, it is clear, that we can not produce a negative
number of units, so we must add constraints on non-negativity of variables:

x1, x2 ≥ 0.

Now, we have the whole linear optimization model of our prototype example:

max 30x1 + 45x2

subject to 2x1 + 10x2 ≤ 60,
6x1 + 6x2 ≤ 60,

10x1 + 5x2 ≤ 85,
x1, x2 ≥ 0.

The next step is the solution to this problem.
However, let us have some remarks on the construction of constraints in the

linear optimisation model. Our prototype example is straightforward, there are
no complicated constraints. Sometimes, we can have in the economic formulation
some conditions which seem to be more complicated. Typically, we meet conditions
as follows:

• it is needed to produce the same amount of Windows 1 as of Windows 2,

• more Windows 1 than Windows 2 needs to be produced,

• it has to be produced at least five more Windows 1 than it is produced
Windows 2

• it has to be produced at least twice as many Windows 1 as it can to be
produced Windows 2

• at least 30 per cent of the production is Windows 1.

These types of conditions are typically the source of problems for students. So,
let us look more carefully on the construction of these constraints.

Let us start with the first type. The condition: "It is needed to produce the
same amount of Windows 1 as Windows 2." It is a straightforward condition, let
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us recall that x1, resp. x2 is an amount of produced Windows 1, resp. Windows
2. So, if the amounts should be the same, we can write it down as

x1 = x2.

The second type of conditions is very similar. We have to produce more Win-
dows 1 than Windows 2, hence we can write

x1 ≥ x2.

The third type of conditions is quite more complicated. We have to produce at
least five more Windows 1 than we produce Windows 2. We know that we produce
x2 of Windows 2, hence we should add five more, it is x2 + 5, and we need to
produce at least such amount of Windows 1 (amount of Windows 1 is denoted by
x1. Therefore, we obtain:

x1 ≥ x2 + 5.
If we are not sure if we are right, we check our solution in the following way.

Let us suppose that we produce for example 4 Windows 2. In such a case if we
want to fulfil the condition, we should produce at least 4 + 5 Windows 1, so x1
should be equal to or bigger than 9. Now, let us use the example number (4) in
our constraint:

x1 ≥ x2 + 5 = 4 + 5 = 9,
hence we have

x1 ≥ 9,
what is right. So our constraint is correct.

The fourth type of conditions is similar. We need to produce at least twice as
many Windows 1 as Windows 2. It means if we produce x2 of Windows 2 then
twice as many Windows 1 as Windows 2 is equal to 2x2; hence the constraint can
be written as

x1 ≥ 2x2.

If we are not sure if we are right, we can again choose some value for x2 and check
our solution as was shown in the previous case.

The other type of condition which we want to present here is the type of con-
dition where some percentages play a role. Our prototype condition says that at
least 30 per cent of the production is Windows 1. Therefore, we can immediately
write that x1 ≥ stg, where stg is 30 per cent of the production. (Suppose that
percents are understood as a per cent of pieces.) What is the whole production?
It is x1 + x2, than 30 percent of (x1 + x2) is 0.3(x1 + x2). Hence, the constraint is
in the form:

x1 ≥ 0.3(x1 + x2),
or

0.7x1 − 0.3x2 ≥ 0.
Let us remark that many software for linear optimisation need to have con-

straints in such forms that all variables are on the left-hand side of the inequality,
so then it is necessary to use the second expression.
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1 LINEAR OPTIMISATION

1.1 Graphical Solution
In the case of the linear optimisation problem with only two variables, we can solve
such problems graphically. To do it, we first need to display the set of feasible
solutions and then if it is possible to add the objective function and identify the
optimum solution.

First, let us explain how to display the set of feasible solutions. The solution
is feasible if it satisfies all constraints.

To illustrate how to develop the solution, we show the graphical solution of
Prototype example 1.1. Let us recall the mathematical model of this example.

max 30x1 + 45x2

subject to 2x1 + 10x2 ≤ 60,
6x1 + 6x2 ≤ 60,

10x1 + 5x2 ≤ 85,
x1, x2 ≥ 0.

Now, we need to display the set of points where all constraints are satisfied.
Let us start with the displaying of the first constraint:

2x1 + 10x2 ≤ 60.

This inequality can be displayed as a half-space which is bounded by the line
given by the formula

2x1 + 10x2 = 60.
Therefore, first, we need to display the line with this formula. Each line is given

by two points, hence, let us find two points of this line. First, let us suppose that
x1 = 0. If we fit it into the equation, we get

2 · 0 + 10x2 = 10x2 = 60,

so we obtain x2 = 6; therefore, the first point of the line is [0, 6]. Similarly, we get
the second point of the line [10, 4]. So, we have the boundary of the half-space.

Now, we need to decide which part of the space is such that for all points at
this set satisfy the inequality

2x1 + 10x2 ≤ 60.

To do it, let us choose some point which does not lie on the boundary, for
example, the point [0, 0] and let us check if the point satisfies the inequality:

2 · 0 + 10 · 0 = 0 ≤ 60.

The inequality is fulfilled, so the searched half-space is such that which includes
the point [0, 0], see the following picture.
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1.1 GRAPHICAL SOLUTION

Similarly, we can construct the other conditions and the intersection of all these
conditions gives us the set of feasible solutions.

This case is the typical one – there exists a non-empty bounded set of feasible
solutions. In such a case there exists at least one optimum solution.

Now, there two possible ways how to identify the optimal solution. First, we
can apply the Fundamental Theorem of Linear Optimization. Which states
that if the set of feasible solutions is bounded and non-empty, then at least one
of the basic solution (it has not been explained yet what it is) is the optimal one,
in a weak formulation (applied for graphical solution), it says that the optimum
solution of LO problems occurs at the region’s corners. Therefore, we can identify
all corners of the set of feasible solutions, to apply the objective function and the
best value of the objective function identifies the optimum solution of the problem.

In Prototype example, we have following corners:

[0; 0], [8.5; 0], [7; 3], [0; 6].

Let us apply the objective function 30x1 + 45x2:

15



1 LINEAR OPTIMISATION

Figure 1.4: The set of feasible solutions for Prototype example

corner value of the objective function
[0; 0] 0

[8.5; 0] 250
[7; 3] 345
[5; 5] 375
[0; 6] 270

From the table, we can see, that the best solution is to produce 5 units of
Windows 1 and 5 units of Windows 2, then the profit is expected to be 345.

The other way, how to identify the optimal solution is to continue in the gra-
phical way, to add the objective function into the graph and to find the optimal
solution in the figure.

The objective function is:

p = 30x1 + 45x2,

where the p depends on the values of variables x1 and x2. However, for a fixed p,
we get a line and for different values of p, we have parallel lines. So, we add to
the graph the line p = 30x1 + 45x2, for one fixed p (typically for p = 0, but it is
not important) and then we move (parallel) the line (in the case of maximisation)

16



1.1 GRAPHICAL SOLUTION

Figure 1.5: Optimal solution of Prototype example

up and up where it still intersect the set of feasible solution – we stop at some the
corner (or border) of the set of feasible solution – what is the optimal solution(s)
of our problem, see the picture 1.1.

However, the intersection of half-spaces of conditions may be empty, in such a
case there is no feasible solution and do not exist an optimum one. Or; typically
when the setting of the example is not correct, the set of feasible solutions is
unbounded and the objective can grow up to infinity, in such a case the optimum
solution does not exist; the objective function is unbounded.

Let us introduce these cases more precisely.

Empty Set of Feasible Solutions To illustrate the case of the empty set of
feasible solutions let us reconsider Prototype example 1.1 with only one extra
condition – let us suppose that the company required to produce at least 9 units
of Windows 1. It means one additional condition:

x1 ≤ 9.

Let us include this condition into the graph, and we can see that the intersection
of the requirements is empty. It means no possible combination of outputs x1, x2
which satisfies all given conditions exists. So, no optimal solution exists, for more
detail see 1.1.

17



1 LINEAR OPTIMISATION

Figure 1.6: No feasible solution.

Unbounded Set of Feasible Solutions It also could happen that the set of
feasible solution is unbounded and then no optimal solution exists, because it is
unbounded. However, it typically means that we forgot some essential condition
in the formulation of the problem because it is impossible (neither theoretically)
to reach unlimited profit.

Infinity Many Optimum Solutions The last type of solution of Linear Op-
timization Problem (we had one optimal solution, no optimal solution (from two
different reasons)) is the case of infinity many optimal solutions. This case takes
place in special situations, when the profit line (generally half-space) is parallel
with some constraint. To illustrate this case, let us reconsider our Prototype ex-
ample 1.1 with a different supposed profit from each unit of Windows 2. In such a
case we have a similar optimisation problem, where the set of feasible conditions
is the same as in the Prototype example (all conditions are the same), only the
objective function differs, more precisely, we want to solve the problem:

18



1.1 GRAPHICAL SOLUTION

Figure 1.7: Infinity Many Optimal Solutions

max 30x1 + 30x2

subject to 2x1 + 10x2 ≤ 60,
6x1 + 6x2 ≤ 60,

10x1 + 5x2 ≤ 85,
x1, x2 ≥ 0.

If we include the profit function into the graph, we can see that it is parallel
with one of the constraints. Hence, the possible optimal solutions will be all point
on the abscissa DK or all convex combination of D and K, more precisely all
solutions in the form

[5 + 2k; 5− 2k], k ∈ [0, 1].

If we suppose that we solve the problem about units of Windows, we suppose
the solution to be integers; then we have three possible solutions:

[5, 5], [6, 4], [7, 3].

For all these possible (and feasible) solutions we obtain the same profit of 300.

19



1 LINEAR OPTIMISATION

Figure 1.8: Data in Excel

windows 1 windows 2 capacity
line 1 2 10 60
line 2 6 6 60
line 3 10 5 85

profit 30 45

Figure 1.9: Variables Included into the Model

windows 1 windows 2 capacity
line 1 2 10 60
line 2 6 6 60
line 3 10 5 85

profit 30 45

variables 0 0

1.2 Linear Optimisation with Solver
Methods for linear optimisation are implemented in many software. In this text,
we will focus on Solver, add-in in Excel.

First, we need to prepare the data in the Excel sheet. In the first step we
rewrite the data of our example in the following way, see the picture 1.8.

Now, all coefficients from the setting of the example are already set in the Excel,
and we need to add variables. In our prototype example, we have two variables;
hence we need to cells for them – we choose two cells and set them to be variables.
We put the starting points into them – 0s, see the picture 1.9.

In the next step, we need to prepare all the functions which we use in the model
– objective function and all left-hand sides of the constraints. We remember, that
all these functions are linear; hence we can write them as a scalar product of the
vector of their coefficients and the vector of variables. We do it in the following
way, see the picture 1.10.

If we have everything prepared, we can open the Solver and set the problem in
to it.

To the cell for the objective function, we set the cell, where we prepared the
formula for the objective function. We set the type of objective function, denote

20



1.2 LINEAR OPTIMISATION WITH SOLVER

Figure 1.10: The Model for the Solver

windows 1 windows 2 used capacity capacity

line 1 2 10 `=SUMPRODUCT(B2:C2;$B$8:$C$8)

line 2 6 6 `=SUMPRODUCTÍ(B3:C3;$B$8:$C$8)

line 3 10 5 `=SUMPRODUCT(B4:C4;$B$8:$C$8)

profit 30 45 `=SUMPRODUCT(B6:C6;$B$8:$C$8)

variables 5 5

the variables (blue cells) and set all constraints.

Two possible ends of the Solver are:

• Solver found an optimal solution,

• Solver did not find an optimal solution.

In the first case, we tick to save the result and sensitive analysis for post-
optimisation analysis, see the following figure.
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1 LINEAR OPTIMISATION

In such a case we will get two more sheets – Sensitivity Report and Answer
Report, where we find more detailed solution of our problem, for more details on
these report see the following section.

In the other case, when the Solver could not find solution, the reports are
not available. Usually, there three main reasons for the second case – no feasible
solution, unbounded solution; or nonlinear problem.

1.2.1 Postoptimality Analysis
The post-optimality analysis also referred to as Sensitive analysis, carries the linear
optimisation analysis beyond the determination of the optimal solution. After the
determination of the optimal solution, we know the optimum values of variables to
achieve the best value of the objective function. However, the optimisation model
can answer many other questions. Questions as

• what does happen if the DM decides to produce a non-optimum product,

• in which price is advantageous to buy more supplies,

• in which price is advantageous to sell a part of supplies,

• if the profit of some product will be changed, will it change the result,

• and so on,

can be often answered without new optimisation.

22



1.2 LINEAR OPTIMISATION WITH SOLVER

More detailed results and answers to these question are in the Sensitivity Report
sheet in Excel (generally, are given by values of so-called dual variables and stability
ranges which are provided by the linear optimisation model, it is possible to get
these answers from the final simplex tableau).

Microsoft Excel 16.0 Answer Report

Worksheet: [lp.xlsx]Example

Report Created: 3/6/2019 10:05:59 AM

Result: Solver found a solution.  All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.031 Seconds.

Iterations: 2 Subproblems: 0

Solver Options

Max Time Unlimited,  Iterations Unlimited, Precision 0.000001, Use Automatic Scaling

Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Max)

Cell Name Original Value Final Value

$E$6 profit used capacity 375 375

Variable Cells

Cell Name Original Value Final Value Integer

$B$8 variables windows 1 5 5 Contin

$C$8 variables windows 2 5 5 Contin

Constraints

Cell Name Cell Value Formula Status Slack

$E$2 line 1 used capacity 60 $E$2<=$G$2 Binding 0

$E$3 line 2 used capacity 60 $E$3<=$G$3 Binding 0

$E$4 line 3 used capacity 75 $E$4<=$G$4 Not Binding 10

23



1 LINEAR OPTIMISATION

Microsoft Excel 16.0 Sensitivity Report

Worksheet: [lp.xlsx]Example

Report Created: 3/6/2019 10:05:59 AM

Variable Cells

Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease

$B$8 variables windows 1 5 0 30 15 21

$C$8 variables windows 2 5 0 45 105 15

Constraints

Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$E$2 line 1 used capacity 60 1.875 60 40 16

$E$3 line 2 used capacity 60 4.375 60 5.333333333 24

$E$4 line 3 used capacity 75 0 85 1E+30 10

A Change in an Objective Function Coefficient

It can be useful for the DM to know how much the contribution of a given
variable to the objective function can be changed without an impact on the
optimal solution. Such changes can occur because of new pricing policies,

changed costs or some other factors.
If we keep the Sensitive analysis sheet in Excel, the first tableau provides us with
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1.2 LINEAR OPTIMISATION WITH SOLVER

information about a change in the objective function coefficient. Each line is
dedicated to the one variable in the objective function.

There to cases to consider (unfortunately, we have only one of them in Prototype
example) – changes for the variable that is not currently included in the optimal
solution and alterations for the variable that is now contained in the optimal

solution.
The question was, how can we change the coefficient by the variables without an
impact on the optimal solution. Now, let us focus on the variable not included in
the optimal solution. In words of classical production problem, it is not optimal
to produce such a product. Therefore, if we change the coefficient in one way (in

case of profit type objective function down in the case of cost type objective
function up) it can not change the optimal solution (the variable was not

effective, and we only do it worse. However, the question is how can we change
the coefficient to get the variable into the solution – it is given by so-called range
of insignificance. As was already mentioned this range is unbounded from one
side (the side depends on the type of the objective function). The second side
gives us the value of the coefficient for which the variable could be already

included in the optimal solution.
For the variables which are included in the optimal solution, we are interested in
range of optimality that gives us for the variable coefficient a range where we

can change it without an impact on the optimal solution. If we change the
variable coefficient in this range (and all other conditions stay same), the optimal
solution will be the same – we get the same values of all variables (therefore, the

objective will be different).
In both cases we can also speak about so-called reduced cost, it is equal to zero
if the variable is included in the optimal solution (except the case when we have a
strict condition, for example, x3 ≤ 4 and we produce just 4). If it is equal to zero,
then we can add this variable into an optimal solution without any impact on the
value of the optimal value of the objective function. On the other hand, in case of
a strictly positive value of reduced cost, we know that each added unit of the

variable into the optimal solution will change the value of the objective function
by the value of reduced cost.

Example 1.2 (Solution to The Best Glass Co. problem) In Prototype exam-
ple we have the following values.
We can see that both variables are included in the optimum solution, so their
reduced costs are equal to zero. The range of optimality for the variable x1 is
[9, 45]. It means that if the profit from product 1 will be changing between 9
and 45 it will be still optimal to produce 5 units of Windows 1 and 5 units of
Windows 2. However, the objective function could change (it depends on the
profits from units of Windows).
Similarly for the Window 2.
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Let us suppose that we have in the example also variable x3 – the number of
units of Window 3 which is equal to zero in the optimal solution. Then the
reduced cost could differ from zero. If the reduced cost is equal to zero, it
means that there are more optimal solutions (we can include the x3 into the
optimal solution without any change of the objective function). If the reduced
cost is some C > 0, it means that with each produced unit of Windows 3 the
objective function goes down by C. In other words, if we want to provide such
product without lost, we need to increase the profit at least by C (the range
of insignificance also gives it).
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1.2 LINEAR OPTIMISATION WITH SOLVER

A Change in the Right-hand Sides of a Constraint

To study the impact of the change in the RHS (right-hand side) of constraint on
the optimal solution we need to understand to shadow prices and range of
feasibility. Both of them are given in Sensitive analysis in Excel (and can be

determinate from the final simplex tableau).
A shadow price is a marginal value; it indicates the impact that the one-unit
change in the amount of a constraint would have on the value of the objective
function. More precisely, a shadow price reveals the amount by which the value
of the objective function would change if the level of the constraint was changed
by one unit (if it increases or goes down depends on the type of the objective

function and kind of change in the restrictions).
However, the level of the change must be in the range of feasibility. If it is out

the range, we need to do the optimisation once again.

Example 1.3 (Solution to The Best Glass Co. Problem) In Prototype exam-
ple we have in optimal solution first two lines fully use, there remains only the
capacity of the line number 3. So, the shadow price for the line 3 is equal to 0.
(If we change the capacity of the line 3 in the range [75,∞] it would not affect
the optimal solution.
For lines 1 and 2 we are in a different situation, under optimal solution they
are fully used. So if we change the capacity of one of them, it would change
the optimal solution – we would be able to produce less or more (it depends
on the type of change) of products, hence we will have higher or lower profit
(also depends on the kind of change).
Let us focus on the variable x1. The shadow price is 1.875 and the range of
feasibility is [44, 100]. It means if we change the capacity of line 1 in the range
of feasibility, the objective function will change by 1.875 per unit of the change
of the capacity.
For example, if we know that we can run the line 1 in extra time in the cost of
1 per hour, then we see that we should do it because our profit will be 1.875
per hour. On the other hand, if we know that each saved hour on line 1 costs
2, then we di it because we lost only 1.875 per hour. (Everything still just in
the range of feasibility.)

1.2.2 Classes of LO Problems
As was already mentioned above, there exist several classes of linear optimisation

problems. The classical ones and the easiest to solve are the standard
maximum problems and the common minimum problems. In these
problems, all variables are constrained to be nonnegative, all constraints are
inequalities, and there are no other special conditions (as variables must be

integers or so on). For the solution of such problems, it is enough to apply the
Simplex method. It is possible (in the case of a small number of variables) to
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solve these problems without using a computer; however, we will not do it here;
for more details see other literature. In this text, we introduce only the solution
by using some software, so it would not be too important for us if the problem is
the classical one or not. For us, it will be essential to be able to formulate the
mathematical model for the given economic problem. So, in this part, we will

focus only on the differences among the different types of issues from the
formulation of the mathematical model.

Diet Problem

Typically, in this type of problem, we consider several different types of the food
each of them has a different proportion of given nutrients which are important for
good health. We are interested in the optimal combination of the food to supply

the required nutrients at a minimum cost.
Such example typically leads to the standard minimum problem.

Example 1.4 (Diet Problem) What is the optimal combination of the yoghurt
and cereals for the health breakfast, if we need to get at 1200 kJ of energy,
18/, g of proteins and 2 g of calcium and not more than 1.2 g of fat and 90 g
of carbohydrates at minimum cost? It is known that the 100 g of the food
contains the following amount of nutrients, the table also contains the price
per 100 g of food.

En.(kJ) Prot.(g) Carb.(g) Fat(g) Ca(mg) Price(CZK)
Yogurt 200 5 6 0,1 160 4
Cereals 1500 9 80 1,5 - 10

Example 1.5 (Solution to The Cutting Stock Problem) First, we need to
identify the variables. It seems that there are two possibilities – x1, x2 – to
be the amount of yoghurt and cereals or – x1, . . . , x5 – to give the amount of
energy, proteins and so on. Is it OK? To check if both possibilities are correct,
let us consider that we already have a solution. In the first case, we say to
the decision maker (DM) – use such amount of yoghurt and such amount of
cereals – it is OK. He knows, how to mix the breakfast. In the second case,
we say to the DM – use such amount of energy, such amount of proteins and
so on. And he probably ask us — how??? So, we did not answer his question.
So, the correct choice was only the first one. We have two variables:
x1 – the amount of yogurt (in 100 g),
x2 – the amount of cereals (in 100 g).
Then, we can formulate the objective function. If x1, resp. x2 gives us the
amount of used yogurt, resp. cereals, it is clear that the price for such breakfast
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is:
4x1 + 10x2.

The constrains are formulated in the similar way, therefore we get the following
model:

c = 4x1 + 10x2 → min.

Subject to conditions:
(a) energy (kJ) 200x1 + 1500x2 ≥ 1200
(b) proteins (g) 5x1 + 9x2 ≥ 18
(c) carbohydrates (g) 6x1 + 80x2 ≤ 90
(d) fat (g) 0, 1x1 + 1, 5x2 = 1, 2
(e) calcium (mg) 160x1 ≥ 2000

x1, x2 ≥ 0.
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The Cutting Stock Problem In this type of problems, we solve the problems
of cutting standard-sized pieces of stock material, such as sheet metal, rolls of
paper, fabric cloth and so on, into fragments of specified sizes while minimising

material wasted or the number of cut pieces.
Therefore, the decision-maker wants to know how many pieces he has to divide in
each way. Therefore, this problem is specific due to the nonstandard variables. In
such issues, we first need to state all alternatives how the original pieces can be
divided into required ones, and the number of these alternatives gives us the

number of variables. Each variable identifies the number of original pieces cut in
the given way. Let us give an example.

Example 1.6 (The Cutting Stock Problem) Let us suppose a company which
needs 160 of 50cm-long bars, 200 of 70cm-long ones and 250 of 90cm-long
bars. The machine produces all bars in the length of 2 meters. How should
the company cut the bars if it wants to minimise the waste?

Example 1.7 (Solution to The Cutting Stock Problem) First, let us consider
all possible alternatives:

length alt. 1 alt. 2 alt. 3 alt. 4 alt. 5 alt. 6
50 cm 4 2 2 1 0 0
70 cm 0 0 1 2 1 0
90 cm 0 1 0 0 1 2
waste (cm) 0 10 30 10 40 20

Now, we can set x1 to be the number of bars cut under the alternative 1 and
so on.
If we know the variables, then it is easy to formulate the mathematical model.

10x2 + 30x3 + 10x4 + 40x5 + 20x6 → min.

Subject to conditions:
(a) 50 cm: 4x1 + 2x2 + 2x3 + x4 ≥ 160
(b) 70 cm: x3 + 2x4 + x5 ≥ 200
(c) 70 cm: x2 + x5 + 2x6 ≥ 250

x1, x2, . . . , x6 ≥ 0, integers.

The Transportation Problem In these problems, we consider several
producers, production plants or ports which supply a particular commodity and
several markets or companies where the merchandise must be shipped. The

available commodity amount at each source is known, the required commodity
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amount by each purchaser is known; and the cost for transportation of the
commodity unit between each supplier and each purchaser is known, too. The

question is how the commodity shipped at a minimum cost.
The main problem is again the correct setting of the variables. We are interested
in the question of how much commodity should be shipped between each supplier
and each purchaser. So, variables are xij’s which give us the amount of product
shipped from the i-th supplier to the j-th purchaser. If we know variables, the

formulation of the mathematical problem is natural.

Problems with Binary Variables In these problems, we typically need to
choose something under some conditions. Usually, we need to select employees,
projects or so on. Let demonstrate such a problem on the following example.

Example 1.8 (Projects) The company needs to decide which the possible
projects will invest. The monthly costs may not exceed 200 thousand dollars.
Further information – monthly costs per each project and its supposed annual
yields are given in the following table. The company decided to choose at most
three of the following projects.
Project P1 P2 P3 P4 P5

monthly cost (thousand dollars) 28 42 66 33 78
annual yield (thousand dollars) 56 82 104 63 120

Such projects should be chosen if the company wants to maximise annual yield
and it is known that it is impossible to realise projects P2 and P4 at the same
time, on the other hand, the company requires to realise at least one of the
projects P1, P3, P4.

Example 1.9 (Solution to Projects) In such a case we have binary variables,
variables p1, p2, . . . , p5 which take values 0 or 1 indicate if the project will be
realized or not. (1 for realized, 0for not realized.)
Then the objective function is:

max 56p1 + 82p2 + 104p3 + 63p4 + 120p5.
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The constraints are as follows.

p1 + p2 + p3 + p4 + p5 ≤ 3
28p1 + 42p2 + 66p3 + 33p4 + 78p5 ≤ 200

p2 + p4 ≤ 1
p1 + p3 + p4 ≥ 1,
p1, p2, . . . , p5 − binary.
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2 Multiple-criteria
Decision-making

Multiple-criteria decision-making (MCDM), multiple-criteria decision analysis; or
multiple-attribute decision-making is a part of operations research. In this part,
the problems of alternatives evaluated under several criteria are solved. Typically,
the criteria are in conflict – we want to buy the best thing cheap as is possible.
MCDM problems are solved in daily life and also in settings such as economic

problems, business, medicine and so on.
One of the typical MCDM problems in economics is portfolio optimisation – the
aim is to find the portfolio with the biggest possible return with the smallest
possible risk. However, it is well-known that a portfolio with a higher expected

return usually has a higher measure of risk.
Generally, cost or price is usually one of the main criteria, and some measure of
quality is typically another one. It is clear that such criteria are in conflict.
If we consider buying a new car, we take into account something like – cost,
comfort, safety, and fuel economy -– it is unusual that the cheapest car is the

most comfortable and the safest one.
It is clear that we do MCDM in our daily lives; usually, we weigh multiple criteria
implicitly, we do not do any analysis, we do not think about any methods. On
the other hand, if we should to decide some critical problem (for example as a
manager in some company), we should be able to explain our decision. The

MCDM methods are the way how to do it. It helps us to structure the problem
and explicitly evaluate multiple criteria properly.

To show more precisely, what type of example we can solve by these methods, let
us consider the following prototype example.

Example 2.1 (Council Tender) Town council announced tender for a building
of a new sewer system. There are four announced criteria of optimisations -
the price of the tender, the duration of the work, the economic results in the
last year of the offering companies and the contribution of subsuppliers. Town
council obtained three offers from three different firms, see the table.
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2 MULTIPLE-CRITERIA DECISION-MAKING

company price duration economic result subsuppliers
(mil. CZK) (months) (mil. CZK) (%)

A 20 26 2 10
B 24 30 6 30
C 18 28 4 25
cr. type min min max min
weights 0.4 0.3 0.1 0.2

The town manager discussed with the town council, and then he set the weights
for individual criterions.

In this example, we have three alternatives — three offers and four criteria. In
the first step, we need to set the weights; here they are given in this example.

Therefore, we aim to identify the best alternative if we take into account all our
criteria. Notably, the MCDM is a case, when we have a (finite) list of possible
alternatives, and we know conditions under which we want to make a decision

and also know objectives.
Typically, better evaluation under one of the criteria means worse evaluation
under another one (s), hence in MCDM, there does not exist an optimum

alternative. Usually, we have a list of possible "good" alternatives, and we aim to
determine the "best" one, in fact, the compromise one. (Because the choice of

the best one is subjective.)
As was mentioned above, in MCDM we have a list of all possible alternatives

evaluated under several criteria. To start to solve such problems we first need to
construct so-called decision matrix R. The table 2.3 gives the decision matrix
for Prototype example, wherein rows we have alternatives and in columns are

considered criteria. Therefore, the element of the matrix rij gives us the
evaluation of the i-th alternatives according to the j-th criterion.

Our decision matrix has three rows (= number of alternatives) and four columns
(= the number of criteria). The element rij gives us the value of the alternative i

under the criterion j.

Criteria Types and their Transformation As we can see in our Prototype
example, we can have typically two criteria types – cost type (in our model the
weight and the price) and profit type (in our case the waterproof rating and the

expert evaluation).
Keeping the type of criteria during our analysis is essential. Some methods need
to have all criteria of profit type; then it is necessary to transform cost type

criteria into profit type (methods how to do it will be discussed later).

Existence of Feasible Solutions Similarly to linear optimisation, the first
question is, if the feasible solution to this problem exists. The feasible solution

is any solution which satisfies all conditions given by the decision maker.
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Typically, we have in our first table only feasible solutions (usually, we do not
include alternatives which do not match with our conditions). Sometimes, we

have a list of several possible, and then we state some conditions and choose the
feasible alternatives, then the set of feasible solutions can be narrower than the

previous list of possible alternatives.

Example 2.2 The DM can look at the announcements and find 20 jobs offers;
however, he is not interested in all of them. Hence, I can make the list of all
of them. But all of them are not acceptable for me - for example for some of
them I do not have a qualification, some of them I am not interested in it and
so on. So I have to narrow the list of offers to only feasible ones. Typically, I
do the list of only feasible offers for me as is done in Prototype example.
There are also methods how to narrow the list – for example Conjunctive and
Disjunctive methods, we will prescribe them later.

Compromise Solution If the feasible solution exists, we should be able to
choose the compromise one, too. The choice of compromise solution depends on

the choice of weights and choice of MCDM method.
Typically, in the MCDM, there does not exist a unique optimal solution. The
unique optimal solution exists only in a case when one of the alternatives is

so-called ideal or it dominates all others; see below what it means.
It is the main difference between MCDM and most other methods of operations
research; typically there is not only one optimal solution. It is a reason, why we

speak about
Before starting with the construction of weights and the introduction of MCDM
methods, let us introduce so-called Pareto optimal alternatives and also the basic

principle of MCDM.

Pareto Optimal Alternatives First, let us introduce dominated
alternatives.

Definition 2.1. We say that the alternative A is dominated by the alternative B,
if the alternative B is under all criteria better than (or the same as) the alternative
A and at least under one criterion it is strongly better than the alternative B. We
also say that the alternative B dominates the alternative A.

It is clear from the definition that the dominated alternatives cannot be the
compromise ones (there exists at least one alternative which is better than

dominated one).
So, in our decision-making process, we are interested in nondominated

alternatives, Pareto optimal ones.

Definition 2.2. We say that the alternative is nondominated (or Pareto optimal)
if any other alternative does not dominate it.
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2 MULTIPLE-CRITERIA DECISION-MAKING

Example 2.3 (Solution to Council Tender Example) In Prototype example,
we have no dominated alternative. To check it we need to compare every two
alternatives if one of them is better than the second one. Let us compare
Company A and Company B – Company A is better in price, duration; and
number of subsuppliers, however, it is worse in economic result than Company
B, hence it does not dominate Company B even it is dominated by it. Similar
results we get if we compare Company A and C and Company B and C.

Utopia and Nadir alternatives In many methods MCDM, we use so called
Utopia alternative and Nadir alternative. Both of these alternatives are
hypothetic alternatives, first one has the best possible values under all criteria,

the second one has the worst evaluation under all criteria.

Example 2.4 (Solution to Council Tender example) Utopia and Nadir alter-
natives in Prototype example

utopia = (18 CzK; 26 months; 6mil. CzK; 10%),

nadir = (24 CzK; 30 months; 2mil. CzK; 30%).

As was already mentioned there exist many methods of MCDM and the solution
depends on the choice of the method. We can construct our own methods for
decision-making. Therefore, how to recognize "good" method? Some basic

properties of MCDM methods which should be satisfied exist. Let us explain
them carefully.

2.0.1 Basic properties of MCDM methods
As we mentioned above, typically there is no unique solution of MCDM problem,
the solution depends on the choice of weights, the choice of method, the option of
data standardisation. However, how to recognise a "good" method of MCDM?
The method should be such that the solution satisfies the following conditions:

Pareto Pptimal Solution The solution given by the method must be Pareto
optimal (nondominated) alternative.

Determination The method must lead to a solution.

Uniqueness The method should give us a unique solution (after the setting of
weights). It must identify one compromise solution.

Invariance to the Ordering of Criteria and Alternatives The choice of the
compromise alternative should not depend on the order of criteria or alter-
natives.
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Remark. It is a very trivial condition which says that for example the result
of the tender cannot depend on the order of candidates - if we sort the
candidates by their names or by the names of their companies or by the data
of receiving their application or by their offer - the result should be still the
same.

Invariance to Measure Units. The choice of compromise alternative should not
be affected by the selection of measure units in which we evaluate the criteria.
For example, if we want to choose the best offer according to the salary, the
result should be the same if we set the salary in pounds, dollars, thousands
of pounds and so on.

Invariance to the Addition of Non-optimal Alternatives. We should cho-
ose the same alternative does not matter if we have added some non-optimal
(for example) dominated alternative to the list of feasible alternatives. The
choice should also be the same whether we remove from the list of alternatives
all dominated alternatives or not.

Fairness of the Method. The method should allow choosing any of nondomi-
nated alternatives by the setting of appropriate weights.

Comments on Properties of the MCDM Methods However, the
properties as mentioned above of MCDM methods seem to be rational; we will
see in the following lectures that some of them are not (unfortunately) satisfied
by all methods. Also, some of the widely used methods do not meet some of

these conditions. Hence, it is necessary to keep it in our mind when we make our
final decision.

2.1 Construction of Weights
The first step in MCDM is the construction of the weights. The weights give us
information about the importance of the criteria (from the point of the decision
maker’s view). Typically, there is one useful assumption for the weights – it is

useful to suppose that the sum of weights is equal to one. Hence from now on, we
will suppose that the sum of weights is equal to one.

Several types of methods on how to construct the weights exist. We can divide
them according to information about criteria preferences which we need to
assemble them. We can have following types of information about the preferences
of criteria and in these cases to use for example following methods to construct
weights. (A lot of methods of construction weights can be developed, so we

mention only some of them.)

No Criteria Preferences • Equal Weight Method

Ordinal Criteria Preferences • Rank (Sum) Weight Method
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• Fuller Triangle Method

Cardinal Criteria Preferences • Reference Point Method
• Saaty Weight Method

No Criteria Preferences

In the case when we have no information about criteria preferences, there is only
one possibility how to construct weights – Equal Weights Method – to

evaluate each criterion by the same weight. In the case when we have n criteria;
we use weights 1/n for each criterion, we can write:

vi = 1/n, for all i ∈ {1, . . . , n},

where n is the number of criteria.
Let us suppose that in our Prototype Example we have no information about

criteria preferences. Let us set the weights.

Example 2.5 (Solution to Council Tender Example) Let us suppose that in
our Prototype Example we have no information about criteria preferences. Let
us construct the weights.
We have four criteria, hence n = 4, therefore we get

v1 = v2 = v3 = v4 = 1/4.

All weights are the same, and their sum is equal to one.

The following picture shows, how to develop this method in Excel.

So, we get:
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Equal weights method

equal points weights (standardization)

Criterion 1 price (mil. CzK) 1 0,25

Criterion 2 duration (months) 1 0,25

Criterion 3 economic result (mil. CzK) 1 0,25

Criterion 4 subsuppliers (%) 1 0,25

sum 4

Ordinal Criteria Preferences

In the case when we have only ordinal information about criteria, it means that
we now only the rank of criteria but we are not able to measure the distance

between criteria.

Rank (Sum) Weight Method Therefore, one of the possible ways how to
construct weights is the following. First, we set the rank to each criterion. We

have n criteria; hence the ranks are from 1 to n. For more important criterion we
have a smaller number of rank, but in weights, the smaller number means less

important criterion. Hence, we construct weights in the following way:

vi = n+ 1− ri

nn+1
2

, for all i ∈ {1, . . . , n},

where n is the number of criteria and ri is the rank of ith criterion. This way of
weight construction is called Rank (Sum) Weight Method.

Example 2.6 (Solution to Council Tender Example) Let us suppose that
in our Prototype Example we know, that the most important criterion for the
decision maker is the price, then the duration, then the number of subsuppliers
and the less important one is the economic result. Let us construct the weights.
We have four criteria, hence n = 4, therefore we get

vi = 4 + 1− ri

44+1
2

,

where ri is the rank of criterion (according to the preference importance. So,

v1 = 4/10, v2 = 3/10, v3 = 1/10, v4 = 2/10;

or
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criterion rank points weight
price 1st 4 4/10
duration 2nd 3 3/10
n. of subsuppliers 3rd 2 2/10
economic result 4th 1 1/10
sum of points 10
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Fuller Triangle Method However, in case of a high number of criteria it
could be difficult to order the criteria; hence we can use so-called Fuller’s method.
Under this method, we compare each pair of criteria and highlight the criterion
which is more essential for us from the couple. Then we compute the number of
preferences for each criterion, and by standardisation, we obtain the weights.

Example 2.7 (Solution to Council Tender Example) Let us order all possible
couples of our criteria into the Fuller triangle and ask the DM to highlight the
more important one from each couple, for the result see Figure ??.

Then, we can construct weights in the following way. (Since the DM is consis-
tent in his preferences, we add 1 to the number of preferences for all criteria
(not to have zero weight), and we obtain the same weights as under Rank
Weight Method. For the construction see the following figure.

Cardinal Criteria Preferences

In the case when we have cardinal information about criteria preferences, it
means that we can measure how much is the one criterion better than the second
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one. One of the typical how to construct the weights under cardinal information
is the so-called Point method.

Reference Point Method This method is based on an evaluation of the
criteria by points according to their importance. There are several ways how to
do it. One of them is to set the point scale for the importance is for example
from 0 to 10, and the DM is asked to assign some points to each criterion to
express its importance. Then we sum all added points and set the weights as

allocated points divided by the sum of all points.
The other way is to ask DM to allocate 100 points among the criteria in the way
that it expresses its importance. Then to get weights, we only divide points by

100 (it is the sum of allocated points). Let us illustrate both of these ways on our
Prototype Example.

Example 2.8 (Solution to Council Tender Example) To construct the weights,
first, we need to ask the decision-maker to assign points to each criterion to give
preference information, then we standardise the points, see the table below.

criterion points(DM) weight
price 10 10/25
duration 9 9/25
n. of subsuppliers 2 2/25
economic result 4 4/25
sum of points 25

Saaty Method This method is not easy to use, on the other hand, it combines
the profits of Fuller triangle method (we compare only pairs of criteria) and it
allows us to use cardinal information. To construct weights by this method, we
first need to construct so-called Saaty matrix, which has so many rows and
columns as is the number of criteria. Each point sij gives us information how

much more important is the ith criterion than the jth one for the decision maker.
We ask DM to assign values into the table according to the following rules:

If the ith criterion is more important than the jth one for the decision
maker assign:

9 - if the preference is extreme,

7 - if the preference is quite strong,

5 - if the preference is strong,

3 - if the preference is quite weak,
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it is also possible to use the other integers bigger than one and less than or equal
to nine to evaluate the measure of preference between criteria.

If the ith and jth criteria are indifferent for the decision maker assign:

1

If the ith criterion is less important than the jth one for the decision
maker assign:

sij = 1/sji.

In the case when the decision maker is absolutely consistent in his preferences,
than

sij = vi/vj.

(It could be also the key which can help to assign the values of the matrix.) In
such a case, we have

sij = sik · skj/for all k = {1, . . . , n}.

If the previous equation is satisfied for all possible combinations of i, j, k then we
speak about the fully consistent matrix and we can easily construct weights by
geometric mean. More precisely, for each criterion we compute the geometric

mean (in Excel the function GEOMEAN) from the values which were assigned to
this criterion (from each matrix row); to get weights we standardise these values.
In case, when the matrix is not fully consistent; this procedure need not lead to
the correct weights. Therefore, we use this process and then ask DM to verify the
solution, i.e. we show him weights and ask him if he agrees with given results. If
not, we show some inconsistency in the matrix and ask him to reconsider the

matrix. Then we apply the procedure once again.

Example 2.9 (Solution to Council Tender Example) First, we ask the DM
to fulfil the Saaty matrix according to rules introduced above. Then we apply
the geometric mean to evaluate each criterion and at the end, we standardise
the weights, see the following table.
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2.2 Methods of MCDM
Many methods of MCDM exist, it is not the aim of this text to introduce all of
them. It this text, we choose some typical methods and introduce their ideas and

information which they can give us.
Every good method of MCDM fulfils the following conditions:

• Dominated alternatives cannot be chosen as the best ones.

• The choice of the best alternative does not depend on the rank of the criteria.

• The choice of the best alternative does not depend on the rank of the alter-
natives.

• The choice of the best alternative does not depend on the scale.

Methods of MCDM can be divided into several groups for example according to
the type of information which must be given about evaluation of alternatives

under criteria.

Ordinal Information • Lexicographical method
• Rank method

Cardinal Information • Point method
• Weighted Sum Method
• TOPSIS
• ELECTRE

2.2.1 Data
Before each analysis, we need to have the data in the form which we can use for

the analysis. There are several problems we often need to handle it.

Missing values We may need to compare given alternatives and unfortunately,
some of them are not evaluated under some criterion. How to handle such a

problem?
One of the possible ways is to remove the alternative from the analysis – we do
not have enough information to do the study. However, the DM can ask us to
include it. So, we can omit the criterion from the analysis (we are not able to

compare all alternatives under it), but if the criterion is essential for the DM, it is
not a good way, too.

So, if we need to include all alternatives and all criteria into the decision-making
process, we need to assign some value to the missing evaluation of the alternative.

The question is how to estimate the assessment. Usually, there are two main
reasons why the assessment is missing. One of them is that it is not essential for
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2 MULTIPLE-CRITERIA DECISION-MAKING

other decision-makers, so it is not given. The second is that the evaluation of this
alternative is under this criterion so bad, that it is not given. So, we should be

able to decide which of the possibilities is the case. In the case of the first
possibilities, we can assign mean (or a value less bad than the mean (from the
evaluation of the criterion under other alternatives)); in the second case, we
should assign the worst evaluation under the criterion or something worse.

Transformation of the type of objective function In many real-life
problems, we have both kinds of type of objective function – cost and benefit

types typically. However, some methods need to have all criteria in benefit type.
How to transform cost-type objective function into benefit-type?

Several ways how to transform the type of objective function exists. One of them
is the change of sign, i.e. instead of min f(x) we use max(−f(x)). This way is
straightforward to do, but the economic interpretation of such values is often
impossible (typically, we get negative values at places where no negative values

could exist). The other way (which omit negative values) is the transformation of
min f(x) into max(1/f(x)) (it is possible only if any value of f(x) is not equal to
zero). The problem of negative values is solved, but the interpretation of such

values still does not exist. The mainly use transformation is the transformation of
min f(x) into max(M − f(x)), where M is the biggest possible value of f(x) or
the biggest acceptable value. In such a case we usually have a good interpretation
(it shows us how much we save up) but the choice of M is individual and the

different choice of M can lead to different decision-making result.

Example 2.10 (Solution to Council Tender example) In our Prototype ex-
ample, we have three cost-type criteria. Therefore, the question is how to
transform them into benefit-type criteria. Let us focus on the criterion price
for example. The companies offer to do the project at the cost of 20, 24, 18
mill. CzK.
In case, when we decide to apply the easiest possible transformations – min f(x)
transform into max(−f(x)); resp. min f(x) into max(1/f(x)), we get benefit-
type criterion with values −20, −24, −18; resp. 1/20, 1/24, 1/18. In both
cases, it is not clear, how to interpret the values, in the first case we get negative
values, what can bring problems during optimization process. Therefore, let
us focus on the transformation of min f(x) into max(M − f(x)). The question
is how to choose the constant M . There are two main ways. First, set

M := max
x

f(x),

in our case M = max{20, 24, 18} = 24. And transformed values are 4, 0, 6.
The interpretation is a possible saving against the worst offer. However, this
transformation depends on the worst value under this criterion, so, it may be

46



2.2 METHODS OF MCDM

affected by some added dominated alternative.
To avoid this problem, we can setM at the beginning of the evaluation process.
We ask the DM, what is the biggest price he can pay and it will be M . All
offers, where the price is bigger than such value we exclude from the decision-
making process (it is not acceptable for the DM). In Prototype example, the
DM can say that the maximum possible price for such a project is 30 mill.
CzK, then we can transform our criterion into benefit-type criterion with values
10, 6, 12. These values can be interpreted as possible saving against the highest
acceptable price. However, it is clear that the choice of M is the individual.

In case, when we have only a few alternatives and few criteria, it is possible to
solve the problems "on the paper". However, in a case when we have a higher

number of alternatives or criteria, it is more comfortable to solve these problems
in some software. In this text, we present the solution in Excel. In the following,
we explain each method of how to apply it on the paper and also demonstrate
how to use it in Excel. Admittedly, there is also software for these kinds of

decision-making problems; however, it is not the aim of this text to introduce it.
To solve these problems in Excel, first, we set the problem into the Excel sheet,
for example in the following way (for Prototype example). (We also set the

weights and compute utopia and nadir alternatives.)
If many alternatives exist, we can first apply the following methods to narrow the
number of feasible alternatives. We also can repeat these methods – to change

the bounds to get less or more alternatives.

Conjunctive methods We choose only such alternatives which fulfil
conditions under all criteria.

Example 2.11 (Solution to Council Tender example) In the tender could be
written that the town council requires only projects in duration less than or
equal to 30 months and in price up to 30 mill. CzK. Hence, no offer which
exceeds one of these numbers is feasible. The project is unacceptable if it takes
more than 30 months or the price is higher than 30 mill. CzK.

Disjunctive method We accept all alternatives which fulfil the given
conditions at least under one criterion.

Example 2.12 (Solution to Council Tender example) In the tender could be
written that the town council requires only projects in duration less than or
equal to 30 months or in price up to 20 mill. CzK. Hence, the acceptable offers
must have a duration less than 30 months, or if it exceeds 30 months, then the
price must be less than 20 mill. CzK.
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Ordinal information

Lexicographical method For the application of this method, it is enough to
have only ordinal information about alternatives preferences under all criteria.
We compare the alternatives under the most important criterion, in the case of
two best alternatives, we examine them under the second criterion and so on.
The main advantage of this approach is that it is straightforward to use, on the
other hand, it takes into account evaluation under only one criterion, which is a

significant disadvantage.

Example 2.13 (Solution to Council Tender example) Let us solve Prototype
example with given weights be the Lexicographical method. According to the
given weights, we can see that the most important criterion is the price. So,
we order the alternative according to the price:
1st company C, 2nd Company A and the last one Company A.

Rank method This method also works only with ordinal information about
alternatives preferences under criteria, nevertheless, it takes into account

evaluation under all criteria. It is based on the weighted rank of alternatives.

Z = (zij = virij).

Then we put

pi =
∑

j

zij.

The best alternative has the smallest value of p.
Let us show the solution of Prototype example by this method.

Example 2.14 (Solution to Council Tender example) First, let us recall the
decision matrix:

Table 2.1: Council Tender Example – Rank Method.
comp. price duration ec. result subsuppliers

(mil.CzK) (months) (mil. CzK) (%)
company A 20 26 2 10
company B 24 30 6 30
company C 18 28 4 25
criterion type min min max min
weights 0.4 0.3 0.1 0.2
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Now, we can set the ranks of each alternative under each criterion:

Table 2.2: Council Tender Example – Orders.
comp. price duration ec. result subsuppliers

(mil.CzK) (months) (mil. CzK) (%)
company A 2nd 1st 3rd 1st
company B 3rd 3rd 1st 3rd
company C 1st 2nd 2nd 2nd

Therefore, we get following weighted ranks:

Table 2.3: Council Tender Example – Solution by the Rank Method.
company computation result rank
company A 2 · 0.4 + 1 · 0.3 + 3 · 0.1 + 1 · 0.2 1.6 1st - 2nd
company B 3 · 0.4 + 3 · 0.3 + 1 · 0.1 + 3 · 0.2 3.6 3rd
company C 1 · 0.4 + 2 · 0.3 + 2 · 0.1 + 2 · 0.2 1.6 1st- 2nd

Using this approach, we cannot decide (it is not obvious) which of the alter-
native is the best one — Companies A and C have the same evaluation.
As was mentioned above, it is possible to use Excel to solve this issue. In Excel,
we can use a function RANK – which gives us the rank of the value from the
given list. The last argument of the function is the parameter of ranking – 0
for ranking from the largest to the smallest and 1 for from the lowest to the
largest. For more details see the following picture or the attached Excel file.
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Point method The principle of this method is similar to the Preference point
method for the criteria of weight construction. We need to have cardinal
information about all alternatives under all criteria, then we assign points

(utility) to each alternative under each criterion and apply weighted sums. (In
Excel by applying SUM.PRODUCT function.) The higher weighted sum is

better. So, the best alternative has the highest weighted sum.

Weighted Sum Method (WSM) In fact, this method can be also called as a
method of linear utility function. (In case, when we suppose linear utility

function, then this method is equivalent to maximization of weighted utility. In
the first step of this method, we use following standardization:

sij = rij − nj

uj − nj

,

where nj; resp. uj stand for nadir; resp. utopia value under jth criterion, i.e. in
case of benefit-type criterion:

nj = min
i
rij and uj = max

i
rij,

in case of cost-type criterion:

nj = max
i
rij and uj = min

i
rij.

The main advantage of this method is its simplicity. On the other hand, the main
disadvantage of this method is a possible dependence on an added dominated

alternative. The way how to handle this problem is the usage of conjunctive and
disjunctive methods before the optimisation.

Let us demonstrate how to use this method for our Prototype example.

Example 2.15 (Solution to Council Tender example) First, we need to stan-
dardise the values. We apply the above-described method.
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Table 2.4: Council Tender Example – Data.
comp. price duration ec. result subsuppliers

(mil.CzK) (months) (mil. CzK) (%)
A 20 26 2 10
B 24 30 6 30
C 18 28 4 25
cr. type min min max min
weights 0.4 0.3 0.1 0.2
utopia alt. 18 26 6 10
nadir alt. 24 30 2 30
STAND.
A 20−24

18−24
26−30
26−30

2−2
6−2

10−30
10−30

B 24−24
18−24

30−30
26−30

6−2
6−2

30−30
10−30

C 18−24
18−24

28−30
26−30

4−2
6−2

25−30
10−30

Therefore, we can apply weights and get the following weighted sums:

Table 2.5: Council Tender Example – Solution by the WSM.
company computation result rank
company A 2

3 · 0.4 + 1 · 0.3 + 0 · 0.1 + 1 · 0.2 0.77 1st
company B 0 · 0.4 + 0 · 0.3 + 1 · 0.1 + 0 · 0.2 0.1 3rd
company C 1 · 0.4 + 1

2 · 0.3 + 1
2 · 0.1 + 1

4 · 0.2 0.65 2nd

It is possible to apply this method in Excel, see the following picture or the
attached Excel file.
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TOPSIS This method is a bit more complicate to compute (so, we will run it
in Excel), on the other hand, it allows us to use euclidian metric what is more

convenient than the assumption of a linear utility function, for example.
For applying this method, we first need to have all the criteria in benefit-type.

Then we do the first standardisation – we divide each number in the table by the
(euclidian) norm if the column vector. Then we apply weights and find out

utopia and nadir alternative. Then it remains to compute for each alternative its
distance (euclidian) from utopia and nadir alternative and compare these values

under given criterion. For more details see attached Excel file.

ELECTRE and others Many methods od MCDM exist, some of them are
computationally simple, some of them quite complicated. Since MCDM methods

are widely used, many SW for MCDM exist, in this course, we use an Excel
Macro SANNA. SANNA was developed at The University of Economics in

Prague and it involves several basic MCDM methods. It can be downloaded from
nb.vse.cz/ ∼ jablon.
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3 Data Envelopment Analysis
(DEA)

In the previous chapter, we introduced the basic methods of MCDM. As was
written there, the solution to such problems depends on the choice of the weights
and also on the selection of the method. The aim of this chapter is different, in

this chapter, the objective of the analysis is the identification of so-called effective
units (alternatives in terms of the previous chapter), where the units

(alternatives) are supposed to have some know inputs (cost-type criteria in terms
of the last chapter) and outputs (profit-type criteria).

More precisely, Data Envelopment Analysis (DEA) is a technique used to
evaluate the technical efficiency of examined units. What do we mean by

technical efficiency? Vaguely speaking, we search for units which achieve the
best outputs at the smallest inputs.

Data envelopment analysis (DEA) also called frontier analysis, was first put
forward by Charnes, Cooper, and Rhodes in 1978. Since the technique was first
proposed much theoretical and empirical work has been done. Many studies have

been published dealing with applying DEA in real-world situations.
It is a performance measurement technique which can be used for evaluating the
relative efficiency of decision-making units (DMU’s) in organisations. A DMU is
a distinct unit within an organisation that has flexibility with respect to some of
the decisions it makes, but not necessarily complete freedom concerning these

decisions.
By this technic, we can typically evaluate activities of bank branches, hospitals,
tax offices, departments of some company, schools and university departments,
government institutions and so on. To use this technic, we need to have several
equivalent units evaluated in several inputs (at least in one) and several outputs
(at least in one). Then we can run DEA and answer the question, which of the
units are effective and what should improve the non-effective ones to become

effective.
To understand DEA methodology, let us first consider the most straightforward
possible case – single input and single output case. Let us formulate the following

prototype example.
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3 DATA ENVELOPMENT ANALYSIS (DEA)

Example 3.1 (Prototype Example – Business Chain) The business chain has
eight branches. For each branch, we know the number of employees and daily
sales (in 10 thousand CzK), see the following table.

Branch A B C D E F G H
N. of employees (x) 2 2 3 4 5 5 6 8
Sales (y) 1 4 2 3 4 2 3 5

Which branch is effective and which need some improvements?

3.1 1 Input - 1 Output Problems
As was already mentioned, this case is the simplest one – there are only a single
input and single output, as is presented in Prototype example. In such a case it is

the easiest way how to measure the efficiency of the unit to use ratios.
Rations are commonly used methods, however, in 1-1 case, it is the easiest to use
it. Because there is no doubt how to measure input and how to measure output –
since we have only one input and one output, we compare the ratios of outputs
and inputs (it does not matter which scale of inputs and outputs we use, we only
have to use the same for all units). Such a ratio can be viewed as the number of
outputs which give us a unit input for each decision-making unit. It is clear that

the higher number stands for more efficient DMU.
Hence in our prototype example, we have:

Branch A B C D E F G H
efficiency y/x 0.5 2 0.67 0.75 0.8 0.4 0.5 0.63

Therefore, we can see that the branch B has the highest ratio of sales per
employee – we can say that the branch B is the most effective branch. On the
other hand, the branch F has the lowest ratio of sales per employee, so we can

say that it is the less effective branch.
Now, the natural question raises – how much effective are the individual branches
– in comparison with the most effective branch B? It is clear that it is possible to

have the output 2 per unit input, let us say, that it is 100%. Then, we can
compare all other branches to the most effective one and calculate their so-called
relative efficiency with respect to the effective branch B. To do it, we

divide the ratio for any branch by 2 (the value for the branch B) and multiply it
by 100 to convert to a percentage.

So, in our example we get:

Branch A B C D E F G H
efficiency y/x 0.25 1 0.335 0.375 0.4 0.2 0.25 0.315
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Now, it is easily seen that all other branches are much less efficient than the
branch B. If we suppose that all branches are comparable (from the point of view

of non-included measures), then we can say that for example the branch A is
effective from only 25% and if we want A to be effective it must change inputs or
outputs or both of them such that their ratio will be the same as the ratio of

output and input of the most effective branch.

such easy examples we can also solve graphically, see the following picture 3.1.

Figure 3.1: DEA - 1 input - 1 output problem
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The line that goes through the beginning and includes the most significant angle
with the axel x is called efficient frontier. All branches which lie at the frontier

are effective (have the same efficiency) and all ones under the frontier are
ineffective. The ineffective branch can become effective if it changes the inputs or

output; or both of it in the way to move itself to the efficient frontier.
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3.2 1 Input - 2 Outputs Problems

In this section, we introduce the last set of DEA problems which can be solved in
the graphical way – 2I-1O problems.

Let us consider the following prototype example.

Example 3.2 (Prototype Example – Business Chain) The business chain has
seven branches. For each branch, it is known the number of employees, number
of customers per hour and daily sales (in 10 thousand CzK), see the following
table.

Branch A B C D E F G
Inputs
n. of employees (x) 2 3 1 1 2 2 4
Outputs
n. of customers per hour (y1) 2 6 2 4 8 10 24
sales in 10 thousand CzK (y2) 10 21 3 3 12 10 8

Is it possible to compare the branches and to decide which of them are effective?

It is clear that we are not able to display all these data into one 2D-graph,
however, we have only one input, so, we can normalise the date into the number
of outputs per unit input and then we get only two variables and will be able to

draw a graph.
In the following table let us have the normalised data.

Branch A B C D E F G
Outputs per unit input
n. of customers per hour and one employee (y1/x) 1 1 2 4 4 5 6
sales in 10 thousand CzK per one employee (y2/x) 5 7 3 3 6 5 2

Now, let us display data in the graph ??.
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Which branches are effective? Since we are not able to compare the outputs, we
denote a unit as an effective if there is no convex combination of other units
better in both outputs, in a graphical way, we draw an efficient frontier as a

convex envelopment of branches.
In Prototype example, we denote four branches as effective ones – B, E, F, G.
All others are ineffective and can become effective if they change their outputs or

input in the way to move itself to the efficient frontier. To measure their
inefficiency; we can use the ratio between the distance of the beginning and the
branch and between the beginning and its peer branch (image of the branch at

the efficient frontier), i.e. for the branch C:

|OC|
|OE|

.

In the case of the branch, C its peer branch exists, and it is the branch E.
Generally, the peer unit does not exist, and it is given by a cross over point of the

efficient frontier and the line provided by the beginning and the branch.
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3.3 2 Inputs - 1 Output problems

There two other cases, when we can use a graphical way of the solution – 1 input
2 outputs problems and 2 outputs 1 input problems. In this section, let us

introduce the graphical solution of the 1I-2O problems.
Let us consider the following prototype example.

Example 3.3 (Prototype Example – Business Chain) The business chain has
nine branches. For each branch, we know the number of employees, overhead
cost (in thousand CzK) and daily sales (in 10 thousand CzK), see the following
table.

Branch A B C D E F G H I
Inputs
n. of employees (x1) 12 7 16 8 4 5 18 20 12
over head cost (thousand CzK) (x2) 9 3 2 4 8 2 12 10 5
Outputs
sales (10 thousand CzK) (y) 3 1 2 2 2 1 3 4 2

Is it possible to compare the branches?

Again, it is clear that we are not able to display all these data into one 2D-graph,
however, we have only one output, so, we can normalise the date into the number
of inputs needed per unit output and then we get only two variables and will be

able to draw a graph.
In the following table let us have the normalised data.

Branch A B C D E F G H I
Inputs per unit output
n. of employees per unit sales (x1/y) 4 7 8 4 2 5 6 5 6
over head cost per unit sales (x2/y) 3 3 1 2 4 2 4 2.5 2.5

Now, let us display data in the following graph.
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3.4 Linear Optimisation in DEA
As was shown above some small DEA problems can be solved graphically.

However, when we have more than two inputs or outputs, or two inputs and two
outputs, then we are not able to apply a graphical solution.

A general solution of DEA models uses linear optimisation. The basic idea is
straightforward, for each unit we search for weights for inputs and outputs such

that the efficiency of the unit is as height as is possible.
In mathematical formulation, we search for weights under which the efficiency of
given unit is maximally and efficiencies of all units are less than or equal to one.

However, if write down the model directly, it is not the linear optimisation
problem, the objective function and constraints are fractions with variables in
both numerators and denominators. Fortunately, there is an easy way how to

turn this model into a linear one. For the objective function, we fix (without loss
of generality) either the numerator to be equal to one, or the denominator to be
equal to one. Constraints are easily converted to linear conditions by multiplying
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both sides of each constraint by the denominator.
Then we get two possible alternative linear models (dual models). When there

exists a solution with objective function equal to one, the tested unit is effective if
not it is not.

If we solve the problem in software, the sensitive analysis could help us to
identify peer units for each ineffective unit and also give the answer how should

the inefficient unit change its inputs, resp. outputs, to be effective.

3.4.1 Basic Notation
First, let us introduce the basic notation.

Let us suppose to have p units to analyse, the number of unit to be denoted by k,
therefore k = 1, 2, . . . , p; Each unit to have m inputs and n outputs.

We denote

xik – i-th input of k-th unit, i = 1, 2, . . . ,m, k = 1, 2, . . . , p,
yjk – j-th output of k-th unit, j = 1, 2, . . . , n, k = 1, 2, . . . , p.

Weights which are assigned to each input, resp. output are denote by ui, resp. vj.
In the general case, we measure the efficiency as

efficiency = weighted sum of outputs
weighted sum of inputs , (3.1)

in mathematical formulation:

ek =

n∑
j=1

vjyjk

m∑
i=1

uixik

, k = 1, 2, . . . , p, (3.2)

where ui, vj are weights for inputs and outputs and xik is the value of i-th iput of
k-th unit and yjk gives the value of j-th output of k-th unit.

3.4.2 CCR input oriented model
These models suppose constant returns. The results show us the way for

ineffective units how to change their inputs to become efective. To decide if the
unit is effective, we need to construct the model for the unit. Therefore, to model

for the unit H (one of the given p units) is:

eH =

n∑
j=1

vjHyjH

m∑
i=1

uiHxiH

→ max,
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which maximise the ration of weighted outputs to weighted inputs subject to the
following constraints:

n∑
j=1

vjHyjk

m∑
i=1

uiHxik

≤ 1, ∀k = 1, 2, . . . , p,

which give us the conditions that the efficiency of each unit is at most equal to
one and constraints:

vjH ≥ 0, ∀j = 1, 2, . . . , n,
uiH ≥ 0, ∀i = 1, 2, . . . ,m,

where the non-negativity of weights is given.
However, such model does not satisfy conditions for linear model, so it is quite
difficult to solve it. Fortunately, this model is equivalent with the following one,

which is already linear.

labeleq : CCRlineárnímodelvstupprimáreH =
n∑

j=1
vjHyjH → max

m∑
i=1

uiHxiH = 1

−
m∑

i=1
uiHxik +

n∑
j=1

vjHyjk ≤ 0, ∀k = 1, 2, . . . , p,

ujH ≥ 0, ∀j = 1, 2, . . . , n,
uiH ≥ 0, ∀i = 1, 2, . . . ,m.

Example 3.4 (Town Offices) The district includes seven towns. The town
offices are evaluated by wage costs (mill. CzK per year), operating costs (mill.
CzK per year), value of municipality property; and by the number of inhabi-
tants as is shown in the following table

Office A B C D E F G
Wage Costs 3,5 3 2,8 4 3,8 3,6 3,9
Operating Costs 1,5 1,4 1,6 1,7 1,3 1,25 1,8
No. of Inhabitants 1020 900 1200 1300 1100 800 1150
Property 50 52 48 55 53 46 54
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Example 3.5 (Solution to Town Offices) Since, we need to evaluate seven
units, we must construct seven models. The primary model for the first town,
unit A is as follows.

e1 = 1020u11 + 50u21 → max
3, 5v11 + 1, 5v21 = 1

−3, 5v11 − 1, 5v21 + 1020u11 + 50u21 ≤ 0
−3v11 − 1, 4v21 + 900u11 + 52u21 ≤ 0

−2, 8v11 − 1, 6v21 + 1200u11 + 48u21 ≤ 0
−4v11 − 1, 7v21 + 1300u11 + 55u21 ≤ 0
−3, 8v11 − 1, 3v21 + 1100u11 + 53u21 ≤ 0
−3, 6v11 − 1, 25v21 + 800u11 + 46u21 ≤ 0
−3, 9v11 − 1, 8v21 + 1150u11 + 54u21 ≤ 0

uj1 ≥ 0, j = 1, 2,
vi1 ≥ 0, i = 1, 2.

Results:

Variable Value
e1 0,909864
v11 0,135
v21 0,3516
u11 0,0003
u21 0,012

Therefore, we observe that the first town, unit A, in ineffective, since the value
of e1 is less than 1. Resulting weights state the benefit of each criterion to the
resulting efficiency. For unit H, we can compute a benefit of i-th input as 3.3

xiHviH
m∑

i=1
xiHviH

, (3.3)

similarly, for j-th output we obtain 3.4
yjHujH

n∑
j=1

yjHujH

. (3.4)

For the unit A and its two output we have the following benefits:
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3,5·0,135
3,5·0,135+1,5·0,3516 = 47%,

1,5·0,3516
3,5·0,135+1,5·0,3516 = 53%,

The same for its outputs:
1020·0,0003

1020·0,0003+50·0,012 = 34%,

50·0,012
1020·0,0003+50·0,012 = 66%.

to propose to unit A how to improve its input to become effective, we need
to solve the dual model for this unit. (Or, we can get the solution from the
sensitive analysis report from SW.)

z1 → min
3, 5z1 − 3, 5λ11 − 3λ21 − 2, 8λ31 − 4λ41 − 3, 8λ51 − 3, 6λ61 − 3, 9λ71 ≥ 0

1, 5z1 − 1, 5λ11 − 1, 4λ21 − 1, 6λ31 − 1, 7λ41 − 1, 3λ51 − 1, 25λ61 − 1, 8λ71 ≥ 0
1020λ11 + 900λ21 + 1200λ31 + 1300λ41 + 1100λ51 + 800λ61 + 1150λ71 ≥ 1

50λ11 + 52λ21 + 48λ31 + 55λ41 + 53λ51 + 46λ61 + 54λ71 ≥ 5
λk1 ≥ 0,

k = 1, 2, . . . , 7.

Variable Value
z1 0,909864
z1 0,909864
λ11 0
λ21 0,3529
λ31 0,2234
λ41 0
λ51 0,3948
λ61 0
λ71 0

From the results, we can see that the peer units for the unit A are units B, C
and E (second, third and fifth town in the district), because their variables λ21,
λ31; and λ51 differ from zero. The variable λ21 corresponds to the second unit
(according to the first index) and so on. To get the optimum inputs, we use
these values and inputs of peer units in the following way, for the first input
of unit A:

x‘
11 = λ21x12 +λ31x13 +λ51x15 = 0,3529 ·3+0,2234 ·2, 8+0,3948 ·3, 8 = 3,1845.
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3 DATA ENVELOPMENT ANALYSIS (DEA)

For the second input of unit A:

x‘
21 = λ22x22 + λ32x23 + +λ52x25 = 0,3529 · 1, 4 + 0,2234 · 1, 6 + +0,3948 · 1, 3 =

1,3648

So, the unit A should decrease its wage costs from 3.5 to 3.1845 and its ope-
rating costs from 1.5 mill. CzK to 1.3648 mill. CzK to become effective.
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4 Project Management with
CPM/PERT Methods

Many people, managers require to plan projects. It means, they must coordinate
a lot of activities, a lot of workers. They need to optimize the time schedule and
cost of the project. Some of the activities depend on each other (in some way),
some activities are independent on other ones. The typical dependence is in the
way, that it is given, that some activity cannot start before the other activity is
finished. (For example, if we want to paint our house, first, we must remove or
cover furniture.) Or, we have blue-collars, who work on one activity, so they

cannot at the same time do on the other one. The next example of the possible
dependence is a condition that two activities must run parallel (for example, we

should serve meal and drinks for dinner at one time).
If we propose a project, we are interested in the following questions:

• What is the shortest possible time in which we can finish the project and
how to manage it?

• How many people do we need to finish the project in the time?

• What is the cost of the project? Is it possible to optimize the cost of the
project?

In the first part of this chapter, we answer the first question. The other questions
we respond in other parts.

First, if we want to analyze any project, we must define the economic problem.
In the case of projects, we need to distinguish, what we want to succeed, what
are the activities, which we require to finish. The manager of the projects must
settle the time necessary for each activity and the relationships among activities.

4.1 Project Network
If the economic problem is well-defined, we can start with the construction of the
mathematical problem. There are exist several approaches on how to formalize

the economic problem in a mathematical way.
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4 PROJECT MANAGEMENT WITH CPM/PERT METHODS

Here, we will display the problem in the graph. If we want to present the project
as a graph, in fact, we construct an oriented network, it is called a project

network.
In fact, there two kinds of project networks. The first one is the activity-on-arc
(AOA) project network. In this case, each activity is represented by an arc;
nodes are used to separate activities from each of its immediate predecessors.
The second type of project networks are the so-called activity-on-node

(AON) project networks. Where each activity is represented by a node; arcs
are used just to show the precedence relationships among the activities.

From now on, we will use only the activity-on-node projects network. One of the
reason, why we chose this way is that in such a case the network presentation is

unique.
Hence, let us describe the construction of this type of project network. The

network is such type of a graph, which starts by one node and ends by one node,
too. The starting node is a node, where the beginning of the project is, it

displays a situation when no activity has started yet The last node is the node,
where all activities are already finished. Between these two nodes, there are all

other nodes which present all activities, one node presents one activity.
Therefore, in case of a project which consists of 5 activities, it is presented by a

project network which contains 7 nodes – first one, last one and five nodes
between them (= 5 activities must be done).

4.2 Critical Path Method (CPM)
Now, let us solve the problem of the shortest possible duration of the project.

This problem we solve in the following steps.

• We display the project network.

• We identify the earliest start time (EST) and earliest finish time
(EFT) for each activity, each node.

• We identify the latest finish time (LFT) and the latest start time (LST)
for each activity.

• We identify the critical path of the project and critical activities.

• For non-critical activities, we identify

Let us consider the following example to explain how to solve these problems.

Example 4.1 REP company was asked to reconstruct the house of NH com-
pany. NH company identifies works, which is necessary to do and REP com-
pany estimated the duration of each activity. To plan the project it was also
necessary to identify predecessors for each activity, the boss of REP company
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4.2 CRITICAL PATH METHOD (CPM)

decided, which activities had to be finished before the beginning of others. All
information is provided in the following table.

activity description duration (days) predecessors
A eviction of technic equipment 3 –
B eviction of furniture 5 A
C floor repairs 10 B
D interior plumbing 5 E
E exterior plumbing 7 –
F interior painting 4 D
G exterior painting and fixtures 4 E
H Install the flooring 4 F

The first step to solve this problem is the displaying of the project network. As
we wrote above, the network of this project contains 10 nodes (the project has 8
activities and start and finish nodes). Oriented arcs show the relations between
activities – for each node (activity) the incoming arcs go from all immediate

predecessors and outgoing go to immediately followers.

The project network for our example problem is as follows.
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START

A|3 E|7

B|5 G|4

D|5

C|10

FINISHF|4

The second step is to identify the earliest start time and the earliest finish time
for each node – each activity. Let us explain Earliest Start Time Rule. The
earliest start time of activity (ES) is the earliest time, when the activity can

start. Every activity can start when all its predecessors are finished, so the
earliest start time of the activity is equal to the largest of the earliest finish
times of its immediate predecessors. In symbols, ES is the largest EF of the

immediate predecessors.
The earliest finish time of the activity is equal to the earliest start time plus the
estimated duration of the activity (it is the earliest time when the activity can
finish, hence we suppose that if it starts at the earliest start and it takes the

estimated duration).
To set up the earliest start times and the earliest finish time we go from the
beginning of the project. First, we set the earliest start time and the earliest
finish time for the node START – we suppose to start at time zero (and no

activity is at this node, so the duration of the activity on the node is equal to
zero), so ES = EF = 0. Then we continue with activities which have no

predecessor and set their ES = 0. If we know the earliest start time of a node we
can set up the earliest finish time of the node:
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4.2 CRITICAL PATH METHOD (CPM)

EF := ES + da,

where da is the estimated duration of the activity.
We continue from the beginning to the end to finish the setting of. We get the

following network.

START

A | 3
ES: 0
EF: 3

E | 7
ES: 0
EF: 7

B | 5
ES: 3
EF: 8

G | 4
ES: 7
EF: 11

D | 5
ES: 18
EF: 23

C | 10
ES: 8
EF: 18

FINISH
ES: 27
EF: 27

F | 4 
ES: 23
EF: 27

If we know ES and EF for all activities, we know the shortest possible duration of
the project (it is equal to the earliest start of FINISH node). The following step
is the identification of critical activities. Critical activities are all activities
which are on the critical path. Activities which must start at their earliest
possible starts to finish the project in the shortest possible time. To identify

critical path we must compute for all activities their latest finishes (LF) and
latest starts. The activities which latest starts coincide with their earliest starts

are the critical ones.
To get the latest finishes we go from the end of the project to the beginning.
First, we put the latest finish of the node FINISH to be equal to its earliest
possible finish (it means we want to finish the project as early as is possible).
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When we know the latest finish of the node – activity, then we can compute the
latest start time for the activity – the activity must start in such a time that it

finishes at the latest finish time, hence

LS := LF − da,

where da is the duration of the activity.
We can set the latest finish of the activity if we know the latest start times of all
the following activities. The LF of the activity is the smallest of all followers LSs

(the activity must be finished when any following activity starts).
For our example, we get the following graph.

START
ES: 0 LS: 0
EF:0 LF:0

A | 3
ES: 0 LS: 0
EF: 3 LF: 3

E | 7
ES: 0 LS: 11
EF: 7 LF: 18

B | 5
ES: 3 LS: 3
EF: 8 LF: 8

G | 4
ES: 7 LS: 23
EF: 11 LF: 27

D| 5
ES: 18 LS: 18
EF: 23 LF:23

C | 10
ES: 8 LS: 8

EF: 18 LF: 18

FINISH
ES: 27 LS: 27
EF: 27 LF: 27

F | 4 
ES: 23 LS:23
EF: 27 LF:27

Now, we can identify critical activities and the critical path. Critical activities
are activities which must start at the earliest start time to finish the project in
time. So, critical activities are such that their earliest start time is equal to their

latest possible start time. In our example we have five critical activities:
A, B, C, D, F – are on the so-called critical path.

In the following graph, we display it in red.
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START
ES: 0 LS: 0
EF:0 LF:0

A | 3
ES: 0 LS: 0
EF: 3 LF: 3

E | 7
ES: 0 LS: 11
EF: 7 LF: 18

B | 5
ES: 3 LS: 3
EF: 8 LF: 8

G | 4
ES: 7 LS: 23
EF: 11 LF: 27

D| 5
ES: 18 LS: 18
EF: 23 LF:23

C | 10
ES: 8 LS: 8

EF: 18 LF: 18

FINISH
ES: 27 LS: 27
EF: 27 LF: 27

F | 4 
ES: 23 LS:23
EF: 27 LF:27

This method we now applied to find the shortest possible duration of the project
is called the Critical Path Method (CPM).

As it was mentioned above the activities on the critical path must begin as soon
as possible. However, what about the activities which are not on the critical path

– in our example activities E and G. For the activity E we can see that the
earliest start is at 0 and the latest start is at 7, hence there is a slack of 5 days for

this activity. Generally, we can get the slack for activity as

slack = LS − ES

for each activity (so the slack for activities on the critical path is equal to zero).

4.3 CPM with Excel

To identify the critical path, we can also use Excel. First, we set the activities,
their durations and their predecessors in the Excel sheet, see picture 4.1.
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Figure 4.1: CPM with Excel

Activity duration predecessors
Start 0
A 3
B 5 A
C 10 B
D 5 C,E
E 7
F 4 D
G 4 E
Finish

In the second step, we start with the computation of the earliest start for each
activity and the earliest finish of each activity. Generally, the earliest start of

every activity is the maximum from the latest starts of each immediate
predecessors. The earliest finish of each activity is equal to the earliest start of
this activity plus the duration of the activity, for more detail see the following

picture 4.2. So, we set the earliest possible starts and the earliest possible finishes
for all activities. The duration of the whole project is the highest value of the

latest possible finish. In our example, we can see that the duration of the project
is equal to 27.
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Figure 4.2: CPM

Activity duration predecessors ES EF LS
Start 0 0 0
A 3 0 =D3+B3
B 5 A =E3 8
C 10 B 8 18
D 5 C,E =MAX(E5;E7)
E 7 0 7
F 4 D 23 27
G 4 E 7 11
Finish =MAX(E8;E9)

Now, we need to state the latest possible finishes and the latest possible starts for
each activity, we begin at the end and go to the start. If we want to finish the

project in the shortest possible time, we have to finish the latest activities at the
time of the duration of the project. The latest possible start of each activity is
equal to the latest possible finish abstracted the duration of the activity. The
latest possible finish of the activity is equal to the smallest value of the latest

possible starts of each immediate predecessors, for more details see the following
picture ??.

4.4 PERT Method
In the previous part, we used fixed durations of activities in our project. We
supposed that we were able to estimate the real duration of all activities.

However in real-life problems, we usually only estimate the real duration. Hence,
we would consider durations of activities to be stochastic, more precisely to be

random variables with some characterization.
A random variable is characterized by its distribution law. The times necessary
for activities are usually supposed to follow a beta distribution. Beta distribution

law has three parameters (m, o, p) as follows:

m – most likely estimate (m), it is the estimate of the most likely value of the
duration,

75



4 PROJECT MANAGEMENT WITH CPM/PERT METHODS

o – optimistic estimate (o), the estimate of the duration under the most favo-
rable conditions,

p – pessimistic estimate (p), the estimate of the duration under the most un-
favorable conditions.

Usually, the companies are able to estimate these three values for all activities.
Why do we consider the beta distribution instead of usually used normal

distribution. In the case of the activity duration, the beta distribution is more
suitable. There are the following reasons:

• beta distribution is bounded – the values of the random variable are between
p and o,

• beta distribution can be asymmetric – the asymmetry is given by the position
of m between p and o (if m in half between p and o then the distribution is
symmetric).

It is well-known from courses on Probability Theory that the sum of independent
normally distributed random variables is normally distributed random variables.
Unfortunately, it is not known the distribution of the sum of independent beta
distributed random variables. So, if we suppose beta distributed duration of
activities in the project, we identify a critical path then we do not know the
distribution of the duration of the whole project. So, there are two main ways

how to handle this problem. One of them (which is not included in this subject)
is using simulation technic to estimate the distribution of the project duration.
The second one is to suppose that the Central Limit Theorem takes a place.
Let us recall in short some basic condition for application of Central Limit

Theorem:

• the durations of activities are independent random variables,

• there is enough (more than 40) activities on the critical path,

• activities which are not on the critical path are not important.

The first two conditions are important conditions for CLT taking place. In the
case of dependence among activity durations, CLT would fail. Also in the case of

a small number of activities, the CLT cannot be applied.
What is the meaning of the third condition? In fact, if we apply CLT in this way,
we do not take into account the non-critical activities. It does not matter only in

the case when these activities do not play an important role. When is this
condition violated? Let us suppose for example the following example. Let us

have two parallel ways in the graph, one of them is critical and the second is not
(in the sense of comparison of expected duration). However, especially in the

case, when there is no important difference between the expected times of these
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two ways and if the variance of the time of non-critical way is bigger than the
variance of the critical one, then in fact, in realizations, our "non-critical way" can

be run as a critical. So, the usage of CLT fails (this way is not included).
The above-mentioned problems are the main disadvantages of using CLT (PERT)

methods. On the other hand, there is no other easy method to estimate the
duration of the stochastic project (except simulation technics).

To do (??)

So, let us suppose that it is possible to apply CLT, hence we will apply the PERT
method in our case. What are the steps of the PERT method?

PERT method:

• For each activity, computation of expected duration and standard deviation
of duration from entered values.

• CPM methods applied for expected durations.

• Identification of critical path, estimation of the expected duration of the
project and its standard deviation.

• Probability computations.

To compute the expected duration and standard deviation for each activity, we
apply a well-known (from Probability theory) formula, which set that for

β-distribution:

µ = p+ 4m+ o

6 ,

and

σ2 =
(
o− p

6

)2
.

Surely, all of these computations, we can do with Excel, see the picture ??.

Figure 4.3: PERT with Excel

Activities predecessors pesimistic most likely optimistic expected variance
Start 0
A 2 3 4 =(C3+4*D3+E3)/6
B A 3 5 7 5 =((E4-C4)/6)^2
C B 7 10 11 9,666667 0,444444
D C,E 4 5 9 5,5 0,694444
E 5 7 9 7 0,444444
F D 4 4 4 4 0
G E 1 4 6 3,833333 0,694444
Finish
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As a next step, we apply expected activity durations to identify the critical path
and critical activities.

To compute the expected duration of the project, we sum the expected durations
of all critical activities, it gives us the expected duration of the project.

However, in this case, we know that the activity durations are random variables,
hence the project duration must be a random variable, too. We apply the CLT

and suppose that it follows a normal distribution with expected value the
expected duration of the project and with variance equal to the sum of critical

activities variances.
If we know the distribution of the random duration, we can do some

computations.
We can be interested in the following questions.

• What is the probability that the project finish early than in time XY?

• What is the duration of the project which will be exceeded with probability
5%?

For a better idea about the answers to these questions, we can draw a graph of
the density of normal distribution. From this graph, we can easily see the idea of

the answers, see the graph ??.
We suppose normal limit distribution. The normal distribution is used very often
in many practical applications and it has a lot of useful properties. One of them is
the so-called Law of 1-2-3 standard deviations. What is it? This law says that the
probability of random result to be mean plus or minus one standard deviation is
equal to 0.67 (does not matter, what the mean is or what the standard deviation
is). In case of the result between mean minus two standard deviations and mean
plus two deviations, the probability is 0.95 and for three deviations, we get 0.995.
In other words, we know, that 2/3 of observations is equal to mean +- standard
deviation. With probability 0.95 the distance of the observation from the mean is

less than two standard deviations. Look at the graph for more details.
To answer the questions about probabilities exactly, we can use for example Excel

(probability calculator). More precisely, the function NORMDIST and
NORMINV. In the function NORMDIST, we set the mean, standard deviation,
and x and it returns the probability of the value less than or equal to x of a
random variable following a normal distribution with entered parameters.

In the function NORMINV, we set mean, standard deviation and probability and
it returns the x such that the random variable following a normal distribution
with entered parameters is less than or equal to x with entered probability.

4.5 Crashing
Let us suppose the following problem. We know the duration of each activity and
the cost of the activity. We know also the cost of each day of the duration of the
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project (office rental, secretary, and so on). It is also known that it is possible to
crash some of the activities – to finish them in a shorter time, however, if we
want to do it, we have to pay more (extra bonus for overtime, overwork, extra

workers, special technology and so on) for their realization. On the other hand, it
is possible that the whole project will be cheaper – we save the cost for the

project. If we crash some activity on the critical path, then we save some money
because we save some days of the project – more precisely, we speak about direct

and indirect costs.
Let us recall what do we mean by direct and indirect costs. Direct costs are that
can be directly attributed to a specific activity, e.g. labor, raw materials, and

equipment rental costs. Indirect costs are costs that cannot be directly attributed
to a specific activity, they are connected with the whole project, e.g.

management, general administration, rental and utility costs.
Direct cost grows up if we crash the activity (we need more people, special

material, bonuses and so on), on the other hand, indirect cost grow up with the
length of the project, so if the whole project is crashed then the indirect cost is

reduced.
The question is, what is the cost-optimal duration of the project.

First, let us introduce a prototype example.

Example 4.2 (ALEA comp.) ALEA comp. needs to finish a planned project
within 12 months. The project has 4 activities – A, B, C, D – with following
properties. The project manager found out that it is not possible to finish the
project in time with given durations of activities. So, it would be necessary
to crash any activities to be able to finish the project on time. Therefore,
the project manager wrote down also the shortest possible duration of each
activity (in months) and estimate the cost for each activity in such a case.
Which activities should be crashed to finish the project in time with minimal
cost? It is known that indirect cost is $6, 000 per month.
Is it better to finish the project in time or to pay a penalty $8000?

Act. Pred. Normal time Crash time Normal cost. Crash cost
A 8 5 $ 25,000 $ 40,000
B 9 7 $ 20,000 $ 30,000
C A 6 4 $ 16,000 $ 24,000
D B 7 4 $ 27,000 $ 45,000

Example 4.3 (Solution to ALEA comp.) When all activities take its normal
durations the project will take 16 months. The critical activities are B and D.
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Total cost is $184, 000 (indirect cost 16·6 = 96 and direct cost 25+20+16+27 =
88). If we want to finish the project in shorter time, we need to decide which
activities we will crash and what will be the price for it (on the other hand we
save on indirect cost).

When we want to solve such a problem, we first need to know which activities is
possible to crash and with what is the cost per week saved. Hence, typically, we

prepare a table, where we denote, how can be the activity crashed and we
estimate for each activity the cost per one week saved using the following formula:

crash cost− normal cost
normal duration− crach duration .

Example 4.4 (Solution to ALEA comp.) Let us do it for Prototype example,
we put it into the following table.
Activity Maximal reduction time (months) cost per 1 month saved
A 3 $ 5,000
B 2 $ 5,000
C 2 $ 4,000
D 3 $ 6,000

To optimize the cost we can use the way which is introduced in the following or
we apply methods of LP.

The first method shows us the principle of optimization, on the other hand, it is
suitable just for small problems. With a higher number of activities, it is more

complicated.
The algorithm of the method is very easy.

1. Use CPM with the normal duration of the activities to identify the critical
path. Compute direct, indirect, and total costs in this case.

2. Choose the activity on the critical way (one activity at each critical paths
in case of more than one critical paths) with the smallest cost per one week
saved which is still possible to crash.

3. Crash the chosen activity(ies) and compute direct, indirect, and total costs
in this case.

4. Continue with repeating steps 2 and 3 till it is possible to crash or till the
total cost goes down or till we catch the duration of the project we need.

This solution can be written in the table, where we write down all necessary
information.
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Example 4.5 (Solution to ALEA comp.) The table for Prototype example
follows.
Total time cr. act. ∆t ∆c indirect c. direct c. total cost
16 - - - $ 96,000 $ 88,000 $ 184,000
15 B 1 $ 5,000 $ 90,000 $ 93,000 $ 183,000
14 B 1 $ 5,000 $ 84,000 $ 98,000 $ 182,000
13 D 1 $ 6,000

C 1 $ 4,000 $ 78,000 $ 108,000 $ 186,000
12 D 1 $ 6,000

C 1 $ 4,000 $ 72,000 $ 118,000 $ 190,000
The cheapest way is to realize the project in 14 month in the cost of $ 182,000.
If we need to finish the project within 12 months, the cost will be $ 190,000.

Remark. We can see from the table, that to get the duration of the project from 13
to 12, it is necessary to crash two activities. If the project takes 13 months, there
are two critical paths, so we need to crash both of them and it is not possible (or
too expensive) to do it by crashing only one activity.

Linear optimization in project crashing

The aim of the optimization is typically to find the least expensive way of
crashing activities to finish the project in a deadline or to find the cheapest way

of the realization of the project.
In the words of linear optimization, we require to minimize a cost under some

restrictions; i.e. subject to some constraints. Let us focus on Prototype example
and show the construction of the LO-model.

Example 4.6 (Solution to ALEA comp.) First, let us choose the variables.
Put yi for the time when the activity i will be finish and y for the time when
the whole project will finish. The other variables are the crashing ones – set
xi for the reduction in the time of the activity i due to the crashing of this
activity.
Let us assume that we are interested in the cheapest possible way how to
complete the project. Then we can formulate the problem:
The objective function presents the total cost. The total cost is the sum of
direct costs in normal time for all activities, crashing costs, and indirect costs
per project (depending on the duration of the project):

min 5000xA + 5000xB + 4000xc + 6000xD + 6000y + 88000,
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subject to

yA ≥ 8− xA

yB ≥ 9− xB

yC ≥ yA + 6− xC

yD ≥ yB + 7− xD

y ≥ yC

y ≥ yD

xA ≤ 3
xB ≤ 2
xC ≤ 2
xD ≤ 3

xA, xB, xC , xD ≥ 0.

The constraints ensure that predecessors finish in time, respectively the fol-
lowing activities start after finishing predecessors.
In the situation when we need to finish the project within some deadline, we
can add a constraint, for example

y ≤ 12.

This model can be solved by Excel, for more detail see the attached file.
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