Zde si ověříme základní rysy programování pro rodinu procesorů na bázi STM32

Cíle:

- 1. Instalace a zprovoznění vývojových nástrojů STM32CubeIDE, STM32CubeMX
- 2. Compilace a spuštění Debugu a přenos programu do základní desky NUCLEO
- 3. Využití sériového kanálu pro zpětnou odezvu desky NUCLEO
- 4. Programové využití I/O portu pro výstup rozsvícení LED
- 5. Programové využití I/O portu pro vstup modré tlačítko

Příprava před cvičením

- Náš vývojový software <u>STM32CubeIDE</u> lze spustit pouze ve Windows. Pokud váš počítač používá Linux nebo Mac OS, můžete nainstalovat virtuální stroje.
- 2. Stáhněte si zdarma <u>STM32CubeIDE</u>, <u>STM32CubeMX</u> a nainstalujte je. Je zdarma, ale omezuje vaše data, což není problém pro všechny domácí a laboratorní úkoly v tomto kurzu.
- 3. Přečtěte si <u>příklad zde</u>. Zopakujte si bitové operace, záporná čísla apod.
- 4. Projděte zapojení I/O portů a jejich použití ZDE
- 5. Přečtěte si LAB1.

Laboratorní úkol

Napište program v C podle vzoru z LAB1 za použití desky NUCLEO-L433RC.

- 1. Po spuštění se zelená LED dioda se rozbliká a bude svítit 1s a a zhasnutá bude 0,5s.
- 2. Dioda po zapnutí trvale svítí. Po stlačení modrého tlačítka LED dioda zhasne. Po uvolnění se opět rozsvítí. Použijte tlačítko pro vysílání Morse značek.
- 3. Po spuštění dioda zelená LED dioda bliká s intervalem 1,0s po stlačení tlačítka se zrychlí na blikání 0,5s.

Kreativní nápady jsou vždy podporovány.

Další úkoly pro chytré hlavy:

Pomocí osciloskopu zobrazit napěťový výstup LED a napěťový signál kolíku připojeného k tlačítku. Zjistěte latenci mezi stisknutím tlačítka a rozsvícením LED.

Pomocné nástroje

Zapojení modrého tlačítka

Piny STM32F433RC

	1	U9A		
		MCU_IOs		
PA	.0 14	PA0 PB0	25	_
PA	1 15	PA1		
PA2 16		PA2 PB1	26	_
PA3 17		PA 3		
PA4 20		PA4 PB2	27	_
PA5 21		PA 5		
PA6 22		PA6 PB3	54	_
PA7 23		PA7		
PA8 41		PA8 PB4	55	_
PA9 42		PA9		
PA10 43		PA10 PB5	50	_
PA11 44		PA11	67	
PA12 45		PA12 PB6	57	-
PA13 40		PA13	60	
PA14 49		PA14 PB7	28	-
PA	15 50	PA15	60	
DC	0 0	PB8	00	_
PC PC	0 0	PC0	61	
PC1 9		PC1 PB9	01	-
PC2 10		PC2	20	
	3 11 14 24	PC3 PB10	20	-
	27	PC4	29	
		PB11	21	-
PC6 37		7.00	33	
PC7 38		PC0 PB12		
PC8 39		PC/	34	
PC9 40		PC8 PB13		
PC10 51		PC9 DC10 DD14	35	
PC11 52		PC10 PD14		
PC12 53		PCI1 DC12 DD15	36	
PC13 2		PC12 PD15		
		PCIS		
		MCU CLK & RST		
	3	PC14 - OSC32 IN PH3-BOOT0	59	_
	4	PC15 - OSC32 OUT	_	
		NRST	7	
•	5	PH0 - OSC_IN		
	e	_		
	0	PH1 - OSC_OUT		
STM32L433RCT6P				

Podrobné schéma desky najdete zde (ve složce: MB1319-L433RC-P-C02 Board schematic)

Konfigurace hodin


```
void SystemClock_Config(void)
{
 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 /** Configure the main internal regulator output voltage
 */
 if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
 {
  Error_Handler();
 }
 /** Initializes the RCC Oscillators according to the specified parameters
 ^{\star} in the RCC_OscInitTypeDef structure.
 */
 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
 RCC_OscInitStruct.PLL.PLLM = 1;
 RCC_OscInitStruct.PLL.PLLN = 10;
 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
 RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
 RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 {
  Error_Handler();
 }
 /** Initializes the CPU, AHB and APB buses clocks
 */
 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
 {
  Error_Handler();
 }
```

Program main.c (pouze while) pro rozsvícení led

```
/* USER CODE BEGIN WHILE */
while (1)
{
```

}

```
/* USER CODE END WHILE */
     /* HAL_GPIO_TogglePin(GPIOB, "LED");
      HAL_Delay(1000);
      */
      // IF Button Is Pressed
         if(HAL_GPIO_ReadPin (GPIOC, GPIO_PIN_13))
         {
           // Set The LED ON!
           HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, GPIO_PIN_SET);
         }
         else
         {
           // Else .. Turn LED OFF!
           HAL_GPIO_WritePin(GPIOB, GPIO_PIN_13, GPIO_PIN_RESET);
         }
/* USER CODE BEGIN 3 */
}
```