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Kmitání (oscilace).

Příkladem kmitů jsou pohyby planet jakýkoliv pohyb po kruhové dráze (periodická
změna), hodinové kyvadlo, chemické oscilace, elektrické kmity, oscilace v biologii, 
oscilace mechanických systémů a další.

Kmitání (oscilace) - opakující se změna hodnoty veličiny v čase v omezeném okolí
rovnovážné polohyvlivem působící síly.

Rovnovážná polohaje poloha v níž na systém (těleso) nepůsobí žádná vnější síla.

Z hlediska časového průběhu pohybu hovoříme o kmitech:
- periodických(harmonické, anharmonické) 
- aperiodických

Z hlediska energie kmitajícího systému hovoříme o:
- kmitech tlumených
- nucených



Příklady druhů kmitání.



Harmonické kmity.
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Periodické harmonické kmityjsou kmity kde výchylka je úměrná harmonické funkci 
času. Harmonická funkce je označení pro goniometrické funkce sinusa cosinus:
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Jednoduchý harmonický kmit.

Výchylkax(t) - poloha bodu v čase t.

Amplituda xm - maximální výchylka z rovnovážné polohy.

Perioda kmitáníT - nejkratší doba po které je systém opět ve výchozím stavu. Jednotkou 
1s.

Frekvence kmitáníf , (ν - ný): Počet opakování (period) za jednotku času. Jednotkou je 1 
1/s = 1 Hertz(1 Hz). Veličina ω je úhlová frekvencejednotku je radián/s. Platí rovnice:

Fázová konstanta φ udává počáteční výchylku čase t = 0. Jednotkou je 1 radián, 1 rad.
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Rychlost a zrychlení harmonického kmitu.

Velikost rychlosti harmonického pohybu:

Amplituda rychlosti harmonického pohybu: ω xm
Rychlost harmonického pohybu pro φ = 0:
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Velikost zrychlení harmonického pohybu:

Amplituda zrychlení harmonického pohybu: ω2xm

2( ) cosma t x tω ω= −



Pohybová rovnice harmonických kmitů – volné kmity.

Vyjdeme z II. Newtonova zákona:

Za předpokladu že působící síla je lineární funkcí prodloužení (Hookův zákon) :

Z předpoklad že síla pružnosti je lineární funkcí prodloužení vyplývá, harmoničnost 
kmitání. Tento předpoklad platí pouze pro malá prodloužení, či výchylky z 
rovnovážné polohy x0.
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Energie harmonických kmitů.

Celková mechanická energie harmonického pohybu E je součtem potenciální a 
kinetické energie Epot a Ekin.
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Potenciální energie Epot:

Kinetická energie Ekin:

Celková mechanická energie E:
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Celková mechanická energie harmonických kmitů je konstantní, potenciální a 
kinetická energie se však vzájemně „přelévají“.



Tlumené harmonické kmitání.

Vnější odporující síla působící na kmitající systém, způsobuje 
postupné zmenšování amplitudy kmitu - tlumení kmitání. 
Modelovým příkladem tlumeného kmitajícího systému je svisle 
zavěšená pružina konstanty tuhosti k k níž je připevněno těleso 
hmotnosti m jehož část je ponořena kapaliny.Uvažujme tlumící
sílu úměrnou rychlosti pohybu kmitajícího systému, B je tlumící
konstanta.
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Výsledná síla působící na těleso je:
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Pohybová rovnice tlumených kmitů :
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Obecnéřešení rovnice tlumeného harmonického kmitání.
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Amplituda tlumeného harmonického kmitání:

Perioda tlumeného harmonického kmitání:
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Řešení rovnice tlumeného harmonického kmitání - rozbor.

Výsledné chování tlumeného oscilátoru závisí na vzájemném poměru elastické a 
tlumící síly. Tedy na velikosti členů ve vztahu pro kruhovou frekvenci ω: 

Tlumený harmonický kmit:
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Aperiodický kmit:
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Mezní aperiodický kmit:
Tlumený harmonický kmit

Mezní aperiodický kmit
Aperiodický kmit

Semestrální práce z předmětu KMA/MM, J.Königsmarková 2009/10.

Tlumení :

Kruhová frekvence vlastních kmitů netlumeného harmonického kmitu:2
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Rovnice tlumeného harmonického kmitání - energie.
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V případě slabého tlumení můžeme amplitudu xm ve vztahu pro energii oscilátoru

nahradit                      , pro celkovou energii tlumeného harmonického pohybu pak platí:( ) bt
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Nucené harmonické kmitání, resonance.

K udržení kmitání soustavy je třeba aby na kmitající soustavu působila 
vnější budící síla FV.(t) která bude z vnějšku dodávat energii. 
Nejjednodušší budící silou je  harmonicky se měnící síla s kruhovou 
frekvencíΩ.
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Řešením rovnice pro harmonickou budící sílu: 0
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Pohybová rovnice nuceného oscilátoru:

Elastická síla:
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Nucené harmonické kmitání, resonance.

Z řešení rovnice nuceného harmonického kmitání vyplývá pro 
amplitudu xm:

Oscilátor kmitá se stejnou frekvencí jako budící síla, amplituda však závisí na rozdílu 
frekvenci budící síly Ω a vlastní frekvenci harmonického oscilátoru ω0. Pokud by 
kruhová frekvence budicí síly byla rovna vlastní frekvenci oscilátoru pak by amplituda 
kmitu byla nekonečná.
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V reálném systému je vždy přítomna tlumící síla FT.(t). Tuto tlumící sílu je tedy třeba 
do pohybové rovnice zahrnout –nucené tlumené harmonické kmitání:
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Řešením rovnice obecné pohybové rovnice nucených kmitů

za předpokladu               je funkce:

Fázový posun budící
síly a výchylky.
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Nucené harmonické kmitání, resonance.

Amplituda Av příspěvku 
budící síly.
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zakmitávání oscilátoru ustálené kmitání

Nucené harmonické kmitání, resonance.
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Nucené harmonické kmitání, rezonanční frekvence.

Amplituda AV nucených kmitů je funkcí budící frekvence     : Ω

Ω

Hledejme frekvenci Ω, pro níž bude amplituda AV maximálnírezonanční frekvenci ΩR :
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Nucené harmonické kmitání, rezonanční křivka.

Fázový posuv: 

Rezonanční křivky: 
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Skládání kmitů.
Pohybová rovnice kmitání je lineární a platí pro ni princip superpozice.
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Skládání kmitů stejného směru a stejné frekvence.
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Skládání kmitů stejného směru a stejné frekvence.
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S amplitudou

a fázovým posunutím
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Výsledný kmit je periodický se stejnou frekvencí.
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Předpoklady: 1 2( )m m mx t x x= =

Skládání kmitů stejného směru a blízkých frekvencí.
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amplituda. harmonické kmitání.
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Výsledné kmitání je periodické s proměnnou amplitudou – rázy, s frekvencí
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Skládání kmitů stejného směru a blízkých frekvencí.
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Skládání navzájem kolmých harmonických kmitů.
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Skládání kolmých kmitů – Lissajousovy obrazce  .

1 2ω ω ω= =Skládání navzájem kolmých harmonických kmitů za předpokladu:

Pohyb je omezen na prostor:
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Vyloučením času získáme trajektorii kmitů, za předpokladu                      obecná
rovnice elipsy:
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Skládání kolmých kmitů – Lissajousovy obrazce  .
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Výsledné kmitání je periodické s periodou rovnou nejmenšímu společnému násobku 
dílčích period pokud platí:



Oscilující chemické reakce.

Objeveny v roce 1951 Borisem Bělousovem (1893 – 1970).
Významný podíl na studiu oscilujících reakcí má Bělousovův
žák Anatol Markovich Zhabotinsky (1938 – 2008). 
Typickým příkladem je reakce sloučenin:

2 4 3 2 2 3

2 4

Ce (SO )  + CH (COOH)  + KBrO  + kyselina citronová 

vše rozpuštěno v H SO  ,



Oscilující chemické reakce – prostorové struktury.



Oscilující chemické reakce – reakční mechamizmus.


