
Elektrické pole v látkách.



Dielektrika.

Dielektrika (izolanty) neobsahují volné elektrony a tedy nevedou elektrický proud. 
Příkladem dielektrik jsou plasty, sklo atd.
Dielektrika polární - molekuly dielektrika nesou permanentní dipolový moment. 
Vektory elektrických dipolových momentů molekul dielektrika jsou v náhodně
orientovány, obrázek (a).
Dielektrika nepolární - molekuly dielektrika jsou elektricky neutrální, obrázek (b). 



Dielektrika ve vnějším elektrickém poli.

Molekuly polárního dielektrika vloženého 
do vnější elektrické pole intenzity E0 se 
zorientují ve směru vektoru intenzity 
elektrického pole, tak, aby potenciální
energie  U elektrického dipólu molekul 
dielektrika ve vnějším poli byla 
minimální. Orientace dipólu je částečná a 
to v důsledku tepelných pohybu a 
vzájemného působení molekul 
dielektrika. Zorientované dipólové
momenty pak uvnitř dielektrika vytváří
elektrické pole E působící proti vnějšímu 
elektrickému poli. Výsledná intenzita 
elektrického pole uvnitř dielektrika je 
tedy menší než intenzita vnějšího 
elektrického pole E0. 

cosU pE θ= −

0
r

E

E
ε =



Molekuly nepolárních dielektrik nemají žádný vlastní dipólový moment (a). Ve 
vnějším elektrickém pole intenzity E0 se v molekulách nepolárního dielektrika 
vzájemně posunou kladné a záporné náboje a molekuly se zpolarizují, indukuje se 
tak elektrický dipól. Elektrické pole indukovaných elektrických dipólů míří proti 
změně, která vyvolala posun kladných a záporných nábojů, tedy proti vnějšímu 
poli. Pole v dielektriku bude tedy menší než vnější pole. 
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Celkovou (makroskopickou) polarizaci P∆V dielektrika 
objemu ∆V lze vyjádřit jako součet dipólových 
momentů všech molekul dielektrika v tomto objemu. 

Zavedeme-li vektor hustoty elektrické polarizace 
ρρρρP(r ), pak celkový elektrický dipólový moment 
objemu V je dán integrálem přes daný objem.
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Kondenzátor je soustava dvou vzájemně
izolovaných vodičů nesoucích opačné náboje. 
Vodiče kondenzátoru obvykle nazýváme desky 
kondenzátoru.i když jejich tvar nemusí být nutně
rovinný (deskový, válcový kondenzátor atd.). 
Nabité desky kondenzátoru vytváří v 
bezprostředním okolí elektrické pole. Potenciály 
kladně a záporně nabité desky jsou V+ a V-. Rozdíl 
V = ∆V = V+ - V- je potenciálový rozdíl mezi oběma 
deskami kondenzátoru. 

Kondenzátor.

Velikost potenciálového rozdílu (napětí) mezi deskami 
kondenzátoru je přímo úměrná množství náboje, které desky 
nesou. Konstantou úměrnosti je kapacita kondenzátoru C, která
je charakteristikou kondenzátoru a určuje množství náboje, 
které může kondenzátor v daném geometrickém uspořádáni 
nést, aniž by došlo k elektrickému výboji mezi deskami.

SI jednotkou kapacity 1 Farad, 1 F = 1 CV-1 . 



Deskový kondenzátor

Deskový kondenzátor tvoří dvě rovnoběžné
desky plochy A, vzájemně oddělené
vzdáleností d. Prostor mezi deskami je 
vyplněn buď vzduchem, nebo izolantem 
vhodných vlastností –dielektrikem.
Elektrické pole mezi deskami je homogenní, 
na okrajích desek je nehomogenní.

Nejjednodušším způsobem nabití
kondensátoru je připojit jej na zdroj 
elektromotorického napětí – baterii.
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Kapacita deskového kondenzátoru

Desky kondesátoru mají plochu A, jsou  
vzdáleny d. Horní deska nese náboj +q, 
spodní deska –q.

cos0EA EAΦ = =Tok vektoru elektrické intensity plochouA:
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deskového kondensátoru vztah:
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Práce vykonaná při nabíjení kondensátoru.

Uvažujme kondensátor kapacity C, jehož desky nesou 
náboj velikosti q´ mezi nimiž je potenciálový rozdíl V ́ .
Jakou práci je třeba vykonat, abychom desky 
kondensátoru nabili nábojem q?
PrácedW vykonaná přenesením elementu náboje dq́ ze 
záporně nabité desky na kladně nabitou desku je rovna:
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Celková práce je pak dána rovnicí:
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Dosazením za q z rovnice q = CVdostaneme vztahy:
2
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Práce W vykonaná při nabití kondensátoru 
nábojem q je rovna ploše trojúhelníku SOAB. 2OAB

Vq
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Potenciální energie nabitého kondensátoru.
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Práce W vykonaná při nabití kondensátoru je v kondensátoru uložena ve formě
potenciální energie U. Tedy platí vztahy:

2 2

2 2 2

q CV qV
U W

C
= = = =

Kde je potenciální energie nabitého kondensátoru uložena?
Náboje na deskách kondensátoru vytváří v prostoru mezi 
deskami elektrické pole intensity E = V/d, tedy práce, kterou 
bylo třeba vynaložit k nabití kondensátoru je práce 
vynaložená na vznik tohoto pole a můžeme tedy 
předpokládat, že potenciální energie je uložena v prostoru 
mezi deskami. Mají-li desky plochu A a jsou vzájemně
vzdáleny d, pak objem V prostoru mezi deskami je roven V = 
Ad. Můžeme pak zavést veličinu hustota energieu = U/V.
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Vztah pro hustotu elektrické energieu platí i v obecném případě.
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Kondenzátor s dielektrikem.

Experimenty M. Faradaye s kondensátory bez a s 
dielektrikem ukázaly, že kapacita kondensátoru se 
vložením dielektrika mezi desky kondensátoru změní a to 
přímo úměrně s konstantou úměrnosti εr :

Konstantu εr nazýváme relativní permitivita. Relativní
permitivita je materiálovou konstantou. 

Faradayovy experimenty:
1. Desky kondensátoru jsou připojeny ke zdroji nábojů, na 

jehož svorkách je konstantní napětí V. Desky 
kondensátoru po vložení dielektrika nesou větší náboj.

2. Kondensátor nese konstantní množství náboje, po 
vložení dielektrika mezi jeho desky pak pozorujeme 
pokles napětí mezi deskami kondensátoru.
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Obrázek (a): Ke svorkám kondensátoru je připojen zdroj 
konstantního napětí V. Po vložení dielektrika mezi desky 
kondensátoru se změní množství náboje na deskách 
kondensátoru z q na q´ = εrq. Kapacita kondensátoru se 
pak změní:
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Obrázek (b): Ke svorkám nabitého kondensátoru je 
připojen voltmetr. Jelikož jsou desky kondensátoru 
izolovány, je na nich konstantní množství elektrického 
náboje q. Po vložení dielektrika mezi desky kondensátoru 
se změní hodnota napětí mezi deskami z V na V ´ = V/εr.
Kapacita kondensátoru se pak změní:
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Gaussův zákon v prostředí bez dielektrika (vakuum, 
vzduch), obrázek (a):
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Gaussův zákon v prostředí s dielektrikem, obrázek 
(b):
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Gaussů zákon v prostředí s dielektrikem.

Z rovnic (1) a (2) vyplývá pro Gaussův zákon v prostředí s dielektrikem (jsou 
přítomny volné a vázané náboje) vztah:
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Gaussů zákon v prostředí s dielektrikem.

Vztah:                             můžeme přepsat po

zavedení vektorové veličiny D = ε0εrE –
vektor elektrické indukce- na tvaru:
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Elektrický náboj q na pravé straně rovnice je volný náboj, to znamená, že náboje 
vázané v dielektriku nebereme v úvahu, na druhou stranu však musíme počítat tok 
vektoru intensity elektrického pole násobený relativní permitivitou dielektrika, 
neboli tok vektoru elektrické indukce D.

Součin ε0εr označujeme jako permitivitu dielektrika ε a obecně ji není možné
vytknout před integrační znamení, neboť její hodnota  se může na Gaussově ploše 
měnit.
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