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Carl Friedrich Gauss

Německý matematik, fyzik, astronom a geodet Karl Friedrich 
Gauss  se narodil 30. dubna 1777 v Braunschweigu v chudé
rodině a už jako dítě na sebe upozornil počtářským nadáním. 
Známý je jeho rychlý součet čísel od 1 do 100 a to tak, že 
sestavil 50 párů čísel, která mají součet 101 (1+100, 2+99, 
3+98 atd.).



Tok vektorového pole.

Uvažujme, proud kapaliny protékající korytem rychlostí v. Vložme do proudu trubku, 
kterou část kapaliny odvádíme. Množství kapaliny, které trubkou proteče za jednotku 
času je úměrnéploše trubky A, úhlu θ, který svírá vektor rychlosti kapaliny s kolmicí
k ploše trubky a velikosti rychlosti v kapaliny. Součin průmětu velikosti vektoru 
rychlosti do směru kolmého k ploše a velikosti plochy nazýváme tok vektorurychlosti, 
označujeme jej Φ.
Jelikož velikost toku závisí na úhlu který svírá vektorová veličiny jejíž tok nás zajímá
a kolmicí k ploše, zavádí se plošný vektor jako součin velikosti plochy A a 
jednotkového vektoru    kolmého k ploše s počátkem na ploše  .
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Pak pro tok vektoru píšeme:



Tok vektoru elektrické intenzity uzavřenou plochou.

Vezměme obecnou uzavřenou plochu (Gaussovu
plochu) vloženou do elektrického pole intenzity 
E. Jak nyní spočítáme tok vektoru elektrické
intenzity touto uzavřenou plochou? Rozdělme 
plochu na malé elementární plošky  ∆A a 
spočtěme tok vektoru elektrické intenzity E
těmito ploškami. Celkový tok Φ vektoru 
elektrické intenzity uzavřenou plochou 
dostaneme, jestliže sečteme všechny toky 
jednotlivými ploškami ∆A: 
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Výpočtem limity tohoto součtu pro ∆A →0
dostaneme:

0
lim  
A

E A E dA
∆ →

Φ = ⋅∆ = ⋅∑ ∫
� �� �

�

Symbol znamená integraci přes uzavřenou 
plochu. SI jednotkou toku vektoru elektrické
intenzity je [Nm2C-1].

∫�



Poznámky k obrázku
1. Tok vektoru je záporný pro ty elementy 

plochy ∆A jejichž normála  míří proti směru 
vektoru intenzity elektrického pole, tedy pro  
úhly z intervalu (π/2, 3π/2 ).

2. Je-li úhel mezi vektory intenzity elektrického 
pole a normálovým vektorem k plošce∆A
roven π/2 nebo 3π/2 je tok roven nule.

3. Pro úhly z intervalu mezi 3π/2 a π/2 je tok 
ploškami ∆A kladný.

4. Celkový tok obecnou uzavřenou plochou je 
nulový, neleží-li zdroj elektrického pole 
náboj uvnitř plochy.



Gaussův zákon.
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Nyní předpokládejme, že uzavřená plocha obklopuje dva náboje 
q1 a q2. Pro celkovou intenzitu E platí E = E1 + E2, celkový tok 
vektoru intenzity E platí:

Ohraničme náboj q uzavřenou plochou A. Tok vektoru 
intenzity elektrického pole E je dán vztahem
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Výsledný tok intenzity elektrického pole E = E1 + E2
vytvořeného náboji q1 a q2 plochou S1 obklopující oba náboje je 
přímo úměrný součtu obou nábojů:

Tok vektoru intenzity elektrického pole E plochou A
obklopující náboj q je přímo úměrný velikosti tohoto náboje. 



Zobecněním pro libovolný počet elektrických nábojů q1 , q2 ,..,qn uzavřených v ploše 
A je Gaussův zákon: 
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Celkový tok vektoru intenzity elektrického pole nábojů q1 , q2 ,..,qn (v případě
spojitého rozložení nábojů je třeba uvažovat rozložení nábojů v objemu, ploše nebo 
přímce, hustotu náboje) uzavřenou plochou A je přímo úměrný celkovému náboji 
uzavřenému plochou A.

Z Gaussova zákona vyplývají následující důsledky (obrázek) :
1. Náboje vně uzavřené plochy nepřispívají k výslednému 

toku vektoru intenzity elektrického pole, na obrázku 
například plocha S3.

2. Orientace vektoru toku intenzity el. pole je dána 
znaménkem náboje, na obrázku plochy S1 a S2 . 

3. Tok plochou obklopující celkový nulový náboj (součet 
všech +q a -q je roven nule), tok plochou S4.



Gaussův zákon→ Coulombův zákon.
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Celkový náboj obklopený kulovou plochou je q; vektory intenzity elektrického pole E
a normálový vektor n k ploše dA považujeme pro plošný element dA za rovnoběžné. 
Pak celkový tok vektoru intenzity elektrického pole náboje q kulovou plochou A je 
dán vztahem 

Bodový náboj q, je obklopen kulovou plochou A poloměru 
r, tento náboj položme do středu kulové plochy A
obklopující náboj. 
Tok vektoru elektrické intenzity elementem plochy dA je 
rovna:

cos0d EdA EdAΦ = =

Z Gaussova zákona a definice vektoru intenzity elektrického pole pak dostaneme 
intenzitu elektrického pole bodového náboje q: 
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Elektrické pole uvnitř vodiče.

Nositeli záporného náboje ve vodiči jsou elektrony. 

Elektrony ve vodiči jsou volné náboje, to znamená, že 

vložíme-li vodič do elektrického pole intenzity E, záporně

nabité elektrony se budou v důsledku síly F = -e E vodičem 

pohybovat ve směru působící elektrostatické síly rychlostí

v. Pohyb nosičů elektrického náboje způsobený elektrickým 

polem označujeme elektrický proud. Důsledkem pohybu 

nosičů náboje je vznik magnetického pole. V okamžiku kdy 

elektrické pole „vypneme“ nepozorujeme, žádný z 

uvedených jevů. Z toho lze vyvodit, že ve uvnitř vodiče 

neexistuje žádné elektrické pole, které by vyvolalo pohyb 

nositelů náboje-elektronů-elektrický proud.



Vezměme měděné těleso zavěšené na nevodivém závěsu, 

uvnitř tělesa vytvořme dutinu. Na měděné těleso 

přenesme nadbytečný elektrický náboj. Vzniká otázka, 

zda nabití měděného tělesa povede ke vzniku náboje  na 

povrchu dutiny.

Zvolme v blízkosti povrchu dutiny uzavřenou Gaussovu

plochu obklopující dutinu. Intenzita elektrického pole 

uvnitř vodiče musí být nulová, z Gaussova zákona pak 

vyplývá, že stěna dutiny neponese žádný povrchový 

náboj. Veškerý nadbytečný náboj přivedený na těleso 

bude rozložen opět pouze na vnějším povrchu tělesa.
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Elektrické pole uvnitř izolovaného vodiče.



Elektrické pole uvnitř izolovaného vodiče.

Vezměme měděné těleso (obrázek), zavěsme ho na 

nevodivé vlákno. Přenesením nadbytečného náboje na toto 

těleso se změní rozložení nábojů (v důsledku elektrické

indukce) tak, aby uvnitř měděného tělesa nezbyl žádný 

další nadbytečný náboj jehož pole by vyvolalo vznik 

elektrického proudu. Veškerý nadbytečný náboj se rozloží

na povrchu měděného tělesa, vznikne povrchově rozložený 

elektrický náboj -povrchový náboj. Z Gaussova zákona 

pak vyplývá, že výsledný tok vektoru elektrické intenzity 

plochou, kterou umístíme v blízkosti povrchu a která

neprochází žádnými náboji je nulový. 
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Elektrické pole vně izolovaného nabitého vodiče.

Elektrické pole uvnitř vodiče je nulové, vně vodiče je v 
důsledku povrchového rozložení nábojů nenulové. 
Vektor intenzity elektrického pole E je kolmý k povrchu 
vodiče.  To znamená, že zde neexistuje složka vektoru 
intenzity rovnoběžná s povrchem vodiče. Tato složka by 
způsobila pohyb náboje a tedy by těleso nebylo v 
elektrostatické rovnováze.

Intenzitu vnějšího elektrického pole plošně rozložených nábojů určíme z Gaussova
zákona. Zvolme si uzavřenou válcovou plochu kolmou k povrchu tělesa a procházející
nabitým povrchem tělesa. Určíme-li tok Φ1 a Φ3 oběma podstavami S1 a S3 a tok Φ2
pláštěm válce S2, pak z Gaussova zákona, celkového toku plochou válce a definice 
plošné hustoty náboje vyjádříme intenzitu elektrického pole. Celkový náboj uzavřený 
ve válci je roven                . 
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Určeme intenzitu elektrického pole v okolí dlouhého 
rovnoměrně nabitého vodiče. Elektrický náboj je ve 
vodiči rozdělen s lineární hustotouλ. Natažený dlouhý 
vodič je válcově symetrický, tudíž vektor elektrické
intenzity bude kolmý k vodiči a jeho velikost bude ve 
všech místech ve vzdálenosti r od osy vodiče stejná. K
výpočtu vektoru elektrické intenzity nabitého vodiče s 
použitím Gaussova zákona si zvolme uzavřenou válcovou 
plochu  S tak, aby podélná osa válce procházela přímým 
vodičem. Tok Φ elektrického E pole pláštěm válce výšky 
h a poloměru r je                                                             . 
Tok oběma podstavami je nulový, z Gaussova zákona 
potom dostaneme vztah pro intenzitu elektrického pole 
nabitého přímého vodiče:               

Elektrické pole rovnoměrně nabitého 
přímého vodiče.
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Normálové vektory:
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Elektrické pole tenké, nekonečné rovnoměrně
nabité nevodivé desky.
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Předpokládejme, že nekonečná tenká nevodivá plocha 
nese rovnoměrně rozložený kladný náboj s povrchovou 
hustotou σ. Z translační symetrie rovinné plochy 
vyplývá, že vektor intenzity elektrického pole E bude 
kolmý k ploše, bude mířit směrem od plochy a jeho 
velikost bude konstantní.
Zvolme válcovou plochu S s podstavami nad a pod 
nabitou plochou, kolmou k nabité rovině. Celkový tok 
válcem je dán součtem toků podstavami Φ1 a Φ2 a 
pláštěm válce Φ3.   
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Z Gaussova zákona dostaneme pro vektor intenzity E:
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Určeme elektrické pole v prostoru mezi dvěma nekonečnými tenkými rovnoměrně
nabitými vzájemně izolovanými rovnoběžnými vodivými deskami nesoucími stejně
velké ale opačné náboje s povrchovou hustotou náboje σ1 a - σ1. Jsou-li desky 
dostatečně vzdálené, náboje budou rovnoměrně rozprostřené po obou stranách nabitých 
desek, obr. (a) a (b). Přiblížíme-li desky k sobě na malou vzdálenost, budou se jejich 
náboje vzájemně přitahovat a dojde k posunu nábojů na vnitřní plochy desek, obr.(c). 
Celková intenzita elektrického pole mezi deskami:

Elektrické pole dvou tenkých, nekonečných 
rovnoměrně nabitých vodivých desek.
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Elektrické pole nabité kulové vrstvy poloměru R . 
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Elektrické pole na vnitřní straně nabité kulové vrstvy.
Zvolme kulovou plochu S1 poloměru r < R s
geometrickým středem shodným se středem kulové
vrstvy. Z Gaussova zákona pro intenzitu elektrického 
pole na vnitřní straně kulové vrstvy vyplývá: 
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Elektrické pole na vnější straně nabité kulové vrstvy.
Zvolme kulovou plochu S2 poloměru R < r s
geometrickým středem shodným se středem kulové
vrstvy. 
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Z Gaussova zákona pro intenzitu elektrického pole na vnější straně nabité kulové
vrstvy dostaneme vztah: 

Nabitá kulová vrstva se chová, jako kdyby veškerý náboj kulové vrstvy byl soustředěn 
v jejím středu.



Elektrické pole rovnoměrně nabité koule poloměru R. 
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S2

Náboj q uvnitř
kulové plochy Kulová

plocha Elektrické pole uvnitř nabité koule.
Zvolme kulovou plochu S2 poloměru r < R s geometrickým
středem shodným se středem kulové vrstvy. Z Gaussova
zákona pak získáme vztah pro intenzitu elektrického pole 
vně nabité koule:

Elektrické pole vně nabité koule.
Zvolme kulovou plochu S1 poloměru R < r s geometrickým
středem shodným se středem nabité koule. Z Gaussova
zákona dostaneme vztah pro intenzitu elektrického pole vně
nabité koule: 
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Elektrické pole vně nabité koule je stejné jako, kdyby 
veškerý náboj koule byl soustředěn ve středu koule.



Elektrické pole rovnoměrně nabité koule poloměru R. 

Souhrn výsledků:
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