Lecture: Multivariate Data Analysis – Introduction
Požadavky na absolvování
Multidimensional Statistical Analysis – Introduction
- if statistical analysis holds more statistical properties – result: multidimensional data
- data analyzed simultaneously
Example:
No | name | height | weight | eye.color |
---|---|---|---|---|
17 | Doe Jane | 165 | 69 | blue |
18 | Roe Richard | 185 | 70 | brown |
- observations for Jane Doe compose a vector of values, say \(x\Tr_{17} = (165, 69, \text{blue})\).
- mathematically, the above table of values is the matrix \[\mathbf X = \begin{bmatrix} x\Tr_1 \\ x\Tr_2 \\ \vdots \\ x\Tr_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & & x_{np} \end{bmatrix}\] where \(p\) is the number of statistical properties and \(n\) is the number of statistical units.
Methods
- principal component analysis (PCA),
- cluster analysis (CA),
- factor analysis (FA),
- regression and classification trees,
- discriminant analysis.
All these methods evaluate the multidimensional data simultaneously, usually using matrix algebra.